
Computer Science 385
Design and Analysis of Algorithms
Siena College
Spring 2024

Problem Set 1
Due: 4:00 PM, Friday, February 2, 2024

You may work alone or in a group of size 2 or 3 on this assignment. However, in order to make sure
you learn the material and are well-prepared for the exams, you should work through the problems
on your own before discussing them with your partner(s), should you choose to work with others.
In particular, the “you do these and I’ll do these” approach is sure to leave you unprepared for the
exams.

All GitHub repositories must be created with all group members having write access and all group
member names specified in the README.md file by 4:00 PM, Monday, January 29, 2024. This
applies to those who choose to work alone as well!

There is a significant amount of work to be done here, and you are sure to have questions. It will
be difficult if not impossible to complete the assignment if you wait until the last minute. A slow
and steady approach will be much more effective.

Getting Set Up
In Canvas, you will find a link to follow to set up your GitHub repository, which will be named
ps1-yourgitname, for this lab. Only one member of the group should follow the link to set up
the repository on GitHub, then others should request a link to be granted write access.

Submitting
Please submit a hard copy (typeset preferred, handwritten OK but must be legible) for all written
questions. Only one submission per group is needed.

Your submission requires that all required code deliverables are committed and pushed to the main
branch of your repository’s origin on GitHub. If you see everything you intend to submit when you
visit your repository’s page on GitHub, you’re set.

Written Questions: Discrete Math and Data Structures
Question 1: Indicate and briefly justify (in words, not mathematically) the “Big O” complexity
for each of the operations below. Differentiate among best, average, and worst cases and specify
under what circumstances they occur, where relevant. Specify the basic operation you are counting
in each case. You may use any trustworthy resource, but any such resource must be cited. Be sure
you understand any answers you need to look up, as you will see some of these or very similar
questions as quiz or exam questions soon. (16 points)

For example, if the operation is “Find the largest value in an unsorted array of n integers”, your
response could be:

CSIS 385 Design and Analysis of Algorithms Spring 2024

The basic operation is an integer comparison. Since the array is unsorted, there is no way to find
the largest until you have compared with every one of the n values, so the best, average, and worst
cases are all O(n).

• Perform a binary search in a sorted array of n integers.

• Add an element to an ArrayList that contains n values, using the default add method.

• Add an element to a singly-linked list that contains n values using the most efficient possible
add method.

• Add an element to a sorted ArrayList that contains n integers, and which has capacity
available to store the new value.

• Sort an array of n integers using bubble sort.

• Determine if a key exists in a binary search tree that contains n keys.

• Determine if a specific value is currently stored in a sorted array of n integers.

• And one that you might not have seen, but should be able to reason out: count the number
of times a specific value occurs in a sorted array of n integers.

Question 2: For each given expression below, give one equivalent, but different looking, expres-
sion for it that you can find in the expression bank. In other words, don’t say that n is equivalent
to n. For logarithms, lg indicates base 2, and otherwise the base of the log will be indicated with a
subscript. (14 points)

Given expressions:

n, n2, n3, lg 2, lg 16, lg n, lg n+ lg b, lg(a/b), lg(2n), lg(2n+1), 2n+1, 4(2n), 2n2n, (2n)2

Expression bank:

n, n+ 1, nlg 8, nlg 16, log10 n, lg n, n lg n, n lg 2, 2lgn, 4lgn, 8lgn, lg(ab), lg a− lg b, 2n+2, 1, 2, 3, 4,
log10 n
log10 2

, lg(2n), 2(2n), 2n+n, 22n, 2n+1, 2n+2, 4n, (2n)n

Written Questions: Summations and Counting
Question 3: Compute closed forms the following sums. Show your work. No credit if intermediate
steps are not shown. Remember page 476 of your textbook! (16 points)

8∑
i=1

(4n+ 2i+ 7)

n−1∑
i=0

(4n+ 2i+ 7)

2

CSIS 385 Design and Analysis of Algorithms Spring 2024

n∑
i=0

2i · n

n∑
i=0

2i+3

For the next 5 questions, refer to this Java code fragment:

for (i = 1; i <= n; i++) {
for (j = 1; j <= n; j++) {

for (k = 1; k <= j; k++) {
System.out.println("Hello!");
System.out.println("Hello!");

}
}

}

Question 4: How many times will this print Hello! when n=2? (1 point)

Question 5: How many times will this print Hello! when n=3? (1 point)

Question 6: Write an expression involving three summations that counts the number of times it
prints Hello! in terms of n. There should be one summation for each loop. (3 points)

Question 7: Simplify your expression from the previous question to get a closed form. Show all
work. (3 points)

Question 8: Substitute n=2 and n=3 in your expression (show your work for this, even if it seems
trivial) to see if the answers match what you counted above. (1 point)

Programming Task: Generating Example Arrays
In future problem sets, you will be asked to perform empirical analyses on the sorting algorithms
we will be studying. To do this, you will need to generate input arrays for the sorting algorithms.
In order to test the best, worst, and average cases of some of these algorithms, you will need to
generate input arrays with various characteristics. For simplicity, we will work with arrays of int.

• an array filled with n random values within a given range

• an array filled with n values sorted in ascending order

• an array filled with n values sorted in descending order

• an array filled with n values “nearly” sorted in ascending order

Requirements:

3

CSIS 385 Design and Analysis of Algorithms Spring 2024

• You may use any programming language, but be aware that you will need to implement the
empirical analysis studies later using this code, so you will either need to do those studies in
the same language or rewrite these generators later in any new language you choose.

• If you use Java, implement it within a class IntArrayPopulator that includes static
methods to fill a given array of intwith numbers matching each of the above characteristics,
and a provide a main method that thoroughly tests these methods for various values of n
and ranges. Be sure you can achieve similar functionality if you choose a different language.

• By taking the array to be filled as a parameter, you’ll be able to reuse the arrays in your
studies rather than re-allocating them each time.

• n will be determined by the length of the array passed to your methods.

• It is important that you generate these efficiently – for example, you should not generate
sorted input by generating random input then sorting it. Generate it in sorted order right
from the start.

• Your method to fill arrays with nearly sorted values should take a parameter that specifies
the fraction of entries that are out of order. For example, if the parameter has a value of 0.05,
approximately one of out of each 20 array slots should contain a value that’s out of order.
There are many reasonable ways to accomplish this.

• AI assistance guideline: you may not simply enter this problem description into a generative
AI system like ChatGPT to have it generate a program for you. However, you may use AI
assistive tools like Copilot to aid in development. Such use must be properly acknowledged,
and if used, a brief statement of how it was used must be included in the header comment at
the top of your program.

Grading for the IntArrayPopulator will total 28 points: 4 points for the correctness of each
of the 4 generator methods (including efficiency), 6 points for sufficient tests, and 6 points for
design, documentation, and style.

Written Questions on Graph Representations
For the questions below, consider the graph representations discussed in class for storing directed
graphs.

Suppose that the amount of memory required by the adjacency matrix graph representation is
exactly |V |2

8
bytes1, and that the exact amount of memory required by the adjacency list graph

representation is exactly 32|V |+ 32|E| bytes2.

1This assumes each Boolean value in the array is stored as a single bit.
2This assumes 8 bytes for each reference in the vertices[] array, 24 bytes for each Vertex object (8 bytes

for the head reference plus 16 bytes needed by Java to store housekeeping information about each Vertex object),
and 32 bytes per Edge object (8 bytes for the integer dest, 8 bytes for the next reference, and 16 bytes to store Java
housekeeping information about each Edge object).

4

CSIS 385 Design and Analysis of Algorithms Spring 2024

Question 9: If you have a graph with 221 (just over 2,000,000) vertices and each vertex has 4
outgoing edges, exactly how much memory in gigabytes is needed to store the graph using each
representation? For each representation, can it fit into the 32GB of main memory which you might
find in a PC today? (4 points)

Question 10: Graphs that have only a few number of edges per vertex are known as sparse graphs.
A graph with a high number of edges per vertex is said to be dense. Suppose you have a complete
directed graph of 221 vertices. Here every vertex has a directed edge to all the other vertices. This
is the “densest” graph there is! Exactly how much memory is needed to store the graph using each
representation? Express your answer in gigabytes. (5 points)

Question 11: For a graph with 221 vertices, where is the “break even” point, measured by |E|,
below which the adjacency list representation is more memory efficient, and above which the
adjacency matrix representation is more efficient? (5 points)

Question 12: What is the average vertex out-degree corresponding to your answer from the previ-
ous question? (3 points)

Grading
This assignment will be graded out of 100 points.

Feature Value Score
Q1 16
Q2 14
Q3 16
Q4 1
Q5 1
Q6 3
Q7 3
Q8 1
IntArrayPopulator correctness/efficiency 16
IntArrayPopulator tests 6
IntArrayPopulator design/documentation/style 6
Q9 4
Q10 5
Q11 5
Q12 3
Total 100

5

