Decrease and Conquer Practice

```
ALGORITHM InsertionSort \((A)\)
    //Input: an array \(A[0 . . n-1]\)
    for \(i \leftarrow 0 . . n-1\) do
        \(v \leftarrow A[i]\)
        \(j \leftarrow i-1\)
        while \(j \geq 0\) and \(A[j]<v\) do
            \(A[j+1] \leftarrow A[j]\)
            \(j \leftarrow j-1\)
            \(A[j+1] \leftarrow v\)
```

In-place? Stable?

Size Metric:

Basic operation:

Best/average/worst cases?

Number of comparisions, worst case:
$C_{\text {worst }}(n)=$

Number of comparisions, best case:
$C_{\text {best }}(n)=$

How likely is this? In what use cases is this more likely?

Number of comparisons, average case (on random ordered data):
$C_{a v g}(n) \approx$

```
ALGORITHM FACTORIAL( }n\mathrm{ )
    if }n=0\mathrm{ then
        return 1
    else
        return }n\cdot\operatorname{FACTORIAL}(n-1
```

Recurrence:
$M(n)=$

Base case/initial condition:

$M()=$

Back substitution steps:

Pattern:

$M(n)=$

Application of base case, and result:
$M(n)=$

Towers of Hanoi

Recall that solving an instance of this problem for n disks involves solving an instance of the problem of size $n-1$, moving a single disk, then again solving an instance of the problem of size $n-1$. We denote the number of moves to solve the probem for n disks as $M(n)$.

Recurrence with base case:

$M(n)=$
$M()=$

Backward substitution:

$M(n)=$

Pattern:

$M(n)=$

Application of base case and result:
$M(n)=$

ALGORITHM BinDigits (n)
if $n=1$ then
return 1
else
return BinDigits $\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+1$
Recurrence with base case:
$A(n)=$
$A(\mathrm{O}=$
Convert to a power of 2 :
$A\left(2^{k}\right)=$
$A(2)=$
Backward substitution:
$A\left(2^{k}\right)=$

Pattern:

$A\left(2^{k}\right)=$
Application of base case and result, convert back to n :
$A\left(2^{k}\right)=$
$A(n)=$

Another example of a common pattern

$$
C(n)=2 C(n / 2)+2
$$

when $n>0$, and a base case of $C(1)=0$.

```
ALGORITHM InsERTIONSORT(A)
    //Input: an array }A[0..n-1
    recInsertionSort(A,n-1)
ALGORITHM RECInSERTIONSORT(A,max)
    //Input: an array }A[0..n-1
    //Input: upper index limit to sort max
    // Base case: a 1-element array
    if max = 0 then
    return
    // Recursive case: sort first max - 1
    RecInsertionSort(A,max - 1)
    // now insert max'th in correct location
    v\leftarrowA[max]
    j\leftarrowmax - 1
    while}j\geq0\mathrm{ and }A[j]>v\mathrm{ do
        A[j+1]}\leftarrowA[j
        j\leftarrowj-1
    A[j+1]\leftarrowv
```

Worst case recursive analysis for the number of comparisons:

