
Computer Science 385
Design and Analysis of Algorithms
Siena College
Spring 2024

Decrease and Conquer Practice

ALGORITHM INSERTIONSORT(A)
//Input: an array A[0..n− 1]
for i← 0..n− 1 do

v ← A[i]
j ← i− 1
while j ≥ 0 and A[j] < v do

A[j + 1]← A[j]
j ← j − 1

A[j + 1]← v

In-place? Stable?

Size Metric:

Basic operation:

Best/average/worst cases?

CSIS 385 Design and Analysis of Algorithms Spring 2024

Number of comparisions, worst case:

Cworst(n) =

Number of comparisions, best case:

Cbest(n) =

How likely is this? In what use cases is this more likely?

Number of comparisons, average case (on random or-
dered data):

Cavg(n) ≈

2

CSIS 385 Design and Analysis of Algorithms Spring 2024

ALGORITHM FACTORIAL(n)
if n = 0 then

return 1
else

return n · FACTORIAL(n− 1)

Recurrence:

M(n) =

Base case/initial condition:

M() =

Back substitution steps:

Pattern:

M(n) =

Application of base case, and result:
M(n) =

3

CSIS 385 Design and Analysis of Algorithms Spring 2024

Towers of Hanoi
Recall that solving an instance of this problem for n disks involves solving an instance of the
problem of size n− 1, moving a single disk, then again solving an instance of the problem of size
n− 1. We denote the number of moves to solve the probem for n disks as M(n).

Recurrence with base case:

M(n) =

M() =

Backward substitution:

M(n) =

Pattern:

M(n) =

Application of base case and result:
M(n) =

4

CSIS 385 Design and Analysis of Algorithms Spring 2024

ALGORITHM BINDIGITS(n)
if n = 1 then

return 1
else

return BINDIGITS(⌊n
2
⌋) + 1

Recurrence with base case:

A(n) =

A() =

Convert to a power of 2:

A(2k) =

A(2) =

Backward substitution:

A(2k) =

Pattern:

A(2k) =

Application of base case and result, convert back to n:

A(2k) =
A(n) =

5

CSIS 385 Design and Analysis of Algorithms Spring 2024

Another example of a common pattern

C(n) = 2C(n/2) + 2

when n > 0, and a base case of C(1) = 0.

6

CSIS 385 Design and Analysis of Algorithms Spring 2024

ALGORITHM INSERTIONSORT(A)
//Input: an array A[0..n− 1]
recInsertionSort(A, n− 1)

ALGORITHM RECINSERTIONSORT(A,max)
//Input: an array A[0..n− 1]
//Input: upper index limit to sort max
// Base case: a 1-element array
if max = 0 then

return
// Recursive case: sort first max− 1
RecInsertionSort(A,max− 1)
// now insert max’th in correct location
v ← A[max]
j ← max− 1
while j ≥ 0 and A[j] > v do

A[j + 1]← A[j]
j ← j − 1

A[j + 1]← v

Worst case recursive analysis for the number of comparisons:

7

