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Topic Notes: Fundamental Data Structures

Before we get into algorithms, we will review and/or introduce some of the data structures we will
be using all semester.

A good reference for these, along with reference implementations, is the Bailey text. It includes
the structure package, some of which replicates features of standard Java API structures, others of
which are unique to this package.

Basic Linear Structures
The basic linear structures are your standard “one-dimensional” list structures: arrays, linked lists,
and strings.

Some characteristics of arrays:

• allow efficient contiguous storage of a collection of data

• efficient direct access to an arbitrary element by index

• cost of add/remove depends on index

Strings are usually built using arrays, and normally consist of bits or characters.

Important operations on strings include finding the length (whose efficiency depends on whether
the strings is counted or null-terminated), comparing, and concatenating.

You have seen the idea of a linked list:
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This structure is made up of a pointer to the first list element and a collection of list elements.

Let’s consider the complexity of our operations on a singly linked list.

• add(0) : 1 step



CSIS 385 Design and Analysis of Algorithms Spring 2019

• add(i) : i steps

• add(n) : n steps

• get/set(0) : 1 step

• get/set(i) : i steps

• get/set(n-1) : n steps

• remove(0) : 1 step

• remove(i) : i steps

• remove(n-1) : n steps

• get all values in sequence : about n2

2
steps (hey, we need an Iterator!)

How do these compare to similar operations on Vectors/ArrayLists?

• adding at the front is easier.

• adding at the end is harder.

• adding in the middle, well it depends where.

• the cost is consistent, though, since there is no reallocation and copying to grow the structure.

• removing at the front is easier.

• removing at the end is harder.

• removing in the middle is probably similar.

• getting/setting an arbitrary value is harder.

Iterators
How do we “visit” each item in a collection? With a Vector/ArrayList, or an array, it’s easy.
We can write a for loop:

public <T> void traverse(ArrayList<T> v) {
int i;

for (i=0; i<v.size(); i++) {
T visitme = v.get(i);
// do something with visitme

}
}
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But imagine if someone has changed the implementation of ArrayList. It no longer has an
array, but a linked structure.

Notice that to get access to the nth element, we need to visit the first n − 1 elements. If our
ArrayList contained one of these linked structures instead of an array, our traverse method
suddenly becomes very inefficient.

This is not good. What is the complexity of get()? In order to get the item at position i, we have
to start at the beginning and we have to follow links until we find the right element.

What we want to do is to use the previous value returned, and take the one pointed to by the list
element we just used to get that previous value. But how? We don’t have that information!

We often need a way of cycling through all of the elements of a data structure. Java provides
exactly what we need: java.util.Iterator<E>

A data structure can create an object of type Iterator, which can be used to cycle through the
elements. For example, built-in Java classes Vector and ArrayList have methods:

public Iterator<E> iterator()

that we can print out the elements of Vector<E>/ArrayList<E> v as follows:

for (Iterator<E> iter=v.iterator(); iter.hasNext(); )
System.out.println(iter.next());

Or in Java 5 and up, if our class implements the Iterable interface (which simply requires
the method iterator) we can use the enhanced for loop (sometimes called a “for each” loop):

for (E item: v) {
System.out.println(item);

}

Stacks and Queues
These basic structures are used for many purposes, including as building blocks for more restrictive
linear structures: stacks and queues.

For a stack, additions (pushes) and removals (pops) are allowed only at one end (the top), meaning
those operations can be made to be very efficient. A stack is a last-in first-out (LIFO) structure.

For a queue, additions (enqueues) are made to one end (the rear of the queue) and removals (de-
queues) are made to the other end (the front of the queue). Again, this allows those operations to
be made efficient. A queue is a first-in first-out (FIFO) structure.

A variation on a queue is that of a priority queue, where each element is given a “ranking” and the
highest-ranked item is the only one allowed to be removed, regardless of the order of insertion. A
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clever implementation using another structure called a heap can make both the insert and remove
operations on a priority queue efficient.

Trees
In the structures we have studied so far, elements are very specifically ordered. In our list structures,
we can refer to elements by an index. One way to think of this is that every element has unique
successor.

In a trees, an element may have multiple successors.

We usually draw trees vertically, but upside-down, in computer science.

You won’t see trees in nature that grow with their roots at the top (but you can see some at Mass
MoCA over in North Adams).

Examples of Trees
Expression trees

One example of a tree is an expression tree:

The expression

(2*(4-1))+((2+7)/3)

can be represented as

+

* /

2 - + 3

4 1 2 7

Once we have an expression tree, how can we evaluate it?

We evaluate left subtree, then evaluate right subtree, then perform the operation at root. The
evaluation of subtrees is recursive.

Tournament Brackets

Another example is a tree representing a tournament bracket:
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Tree of Descendants

One popular use of a tree is a pedigree chart – looking at a person’s ancestors. Instead, let’s look
at a person’s descendants. (Example drawn in class).

Tree Definitions and Terminology
There are a lot of terms we will likely encounter when dealing with tree structures:

A tree is either empty or consists of a node, called the root node, together with a collection of
(disjoint) trees, called its subtrees.

• An edge connects a node to its subtrees

• The roots of the subtrees of a node are said to be the children of the node.

• There may be many nodes without any successors: These are called leaves or leaf nodes.
The others are called interior nodes.

• All nodes except root have unique predecessor, or parent.

• A collection of trees is called a forest.

Other terms are borrowed from the family tree analogy:
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• sibling – nodes sharing the same parent

• ancestor – a node’s parent, parent’s parent, etc.

• descendant – a node’s child, child’s child, etc.

Some other terms we’ll use:

• A simple path is series of distinct nodes such that there is an edge between each pair of
successive nodes.

• The path length is the number of edges traversed in a path (equal to the number of nodes on
the path - 1)

• The height of a node is length of the longest path from that node to a leaf.

• The height of the tree is the height of its root node.

• The depth of a node is the length of the path from the root to that node.

• The degree of a node is number of its direct descendents.

• The idea of the level of a node is defined recursively:

– The root is at level 0.

– The level of any other node is one greater than the level of its parent.

Equivalently, the level of a node is the length of a path from the root to that node.

We often encounter binary trees – trees whose nodes are all have degree ≤ 2.

We will also orient the trees: each subtree of a node is defined as being either the left or right.

For binary trees, there are additional properties to consider, though not all terms are universally
accepted to have the meanings below.

• a full binary tree is one in which every node has either 0 or 2 children (i.e., no only children
allowed)

• a complete binary tree is one where each level contains all possible nodes exept the last, and
any missing nodes must be all the way to the right

• a perfect binary tree is one where all levels in existence contain all possible nodes (some
texts use this as the definition of a full tree)
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Iterating over all values in linear structures is usually fairly easy. Moreover, one or two orderings
of the elements are the obvious choices for our iterations. Some structures, like an array, allow us
to traverse from the start to the end or from the end back to the start very easily. A singly linked
list however, is most efficiently traversed only from the start to the end.

For trees, there is no single obvious ordering. Do we visit the root first, then go down through the
subtrees to the leaves? Do we visit one or both subtrees before visiting the root?

There are four standard tree traversals, considered here in terms of binary trees (though most can
be generalized):

1. preorder: visit the root, then visit the left subtree, then visit the right subtree.

2. in-order visit the left subtree, then visit the root, then visit the right subtree.

3. postorder: visit the left subtree, then visit the right subtree, then visit the root.

4. level-order: visit the node at level 0 (the root), then visit all nodes at level 1, then all nodes
at level 2, etc.

For example, consider the preorder, in-order, and postorder traversals of the expression tree

/

* 2
+ -
4 3 10 5

• preorder leads to prefix notation:
/ * + 4 3 - 10 5 2

• in-order leads to infix notation:
4 + 3 * 10 - 5 / 2

• postorder leads to postfix notation:
4 3 + 10 5 - * 2 /

Graphs
A graph G is a collection of nodes or vertices, in a set V , joined by edges in a set E. Vertices have
labels. Edges can also have labels (which often represent weights). Such a graph would be called
a weighted graph.

The graph structure represents relationships (the edges) among the objects stored (the vertices).

For a tree, we might think of the tree nodes as vertices and edges labeled “parent” and “child” to
represent nodes that have those relationships.
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• Two vertices are adjacent if there exists an edge between them.

e.g., A is adjacent to B, G is adjacent to E, but A is not adjacent to C.

• A path is a sequence of adjacent vertices.

e.g., A-B-C-F-B is a path.

• A simple path has no vertices repeated (except that the first and last may be the same).

e.g., A-B-C-E is a simple path.

• A simple path is a cycle if the first and last vertex in the path are same.

e.g., B-C-F-B is a cycle.

• Directed graphs (or digraphs) differ from undirected graphs in that each edge is given a
direction.

• The degree of a vertex is the number of edges incident on that vertex.

e.g., the degree of C is 4, the degree of D is 1, the degree of H is 0.

For a directed graph, we have more specific out-degree and in-degree.

• Two vertices u and v are connected if a simple path exists between them.

• A subgraph S is a connected component iff there exists a path between every pair of vertices
in S.

e.g., {A,B,C,D,E,F,G} and {H} are the connected components of our example.

• A graph is acyclic if it contains no cycles.

• A graph is complete if every pair of vertices is connected by an edge.

There are two principal ways that a graph is usually represented:

1. an adjacency matrix, or
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2. adjacency lists.

As a running example, we will consider an undirected graph where the vertices represent the states
in the northeastern U.S.: NY, VT, NH, ME, MA, CT, and RI. An edge exists between two states if
they share a common border, and we assign edge weights to represent the length of their border.

We will represent this graph as both an adjacency matrix and an adjacency list.

In an adjacency matrix, we have a two-dimensional array, indexed by the graph vertices. Entries
in this array give information about the existence or non-existence of edges.

We represent a missing edge with null and the existence of an edge with a label (often a positive
number) representing the edge label (often representing a weight).

Adjacency matrix representation of NE graph
NY VT NH ME MA CT RI

NY null 150 null null 54 70 null
VT 150 null 172 null 36 null null
NH null 172 null 160 86 null null
ME null null 160 null null null null
MA 54 36 86 null null 80 58
CT 70 null null null 80 null 42
RI null null null null 58 42 null

If the graph is undirected, then we could store only the lower (or upper) triangular part, since the
matrix is symmetric.

An adjacency list is composed of a list of vertices. Associated with each each vertex is a linked list
of the edges adjacent to that vertex.

EdgesVertices

NY

VT

NH

ME

MA

CT

RI

MA/54 CT/70VT/150

NY/150 NH/172 MA/36

VT/172 ME/160 MA/86

NH/160

NY/54 VT/36 NH/86 CT/80 RI/58

NY/70 MA/80 RI/42

MA/58 CT/42
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In some cases, a matrix representation is more desirable. In other cases, it is the list representation.
It depends on the density of the graph and which graph operations need to be most efficient for the
task at hand.

In class, we will work through the implementation of a few methods of a simple directed graph (one
with no vertex or edge labels) for both an adjacency matrix and an adjacency list representation.

In the example implementations, we will also consider the efficiencies in terms of both time and
space.

Sets and Dictionaries
A set, just like in mathematics, is a collection of distinct elements.

There are two main ways we might implement a set.

If there is a limited, known group of possible elements (a universal set) U , we can represent any
subset S by using a bit vector with the bit at a position representing whether the element at that
position in U is in the subset S.

If there is no universal set, or the universal set is too large (meaning the bit vector would also be
large, even for small subsets), a linear structure such as a linked list of the elements of the set can
be used.

A dictionary is a set (or multiset, if we allow multiple copies of the same element) which is de-
signed for efficient addition, deletion, and search operations. The specific underlying implementa-
tion (array, list, sorted array, tree structure) depends on the expected frequency of the operations.

We will consider many of these data structures more carefully, and will see several more advanced
data structures later in the course.
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