
Computer Science 385
Design and Analysis of Algorithms
Siena College
Spring 2018

Lab 8: Search Trees
Due: Start of your next lab session

You will be assigned a partner to work with on this lab. Only one submission per group is needed.

Group members:

Learning goals:

1. to review and extend understanding of binary tree algorithms

2. to gain experience working with a binary search tree implementation

3. to understand the details of AVL trees and 2-3 trees

4. to see a first example of presorting as a solution technique

Getting Set Up
You will receive an email with the link to follow to set up your GitHub repository, which will be
named searchtrees-lab-yourgitname, for this Lab. One member of the group should
follow the link to set up the repository on GitHub, then that person should email the instructor
with the other group members’ GitHub usernames so they can be granted access. This will allow
all members of the group to clone the repository and commit and push changes to the origin on
GitHub.

Submitting
Once all written items are initialed to indicate completion, turn in one copy of this handout. Be
sure names of all group members are clearly on the first page.

Your submission requires that the code deliverables are committed and pushed to the master for
your repository’s origin on GitHub. That’s it! If you see everything you intend to submit when you
visit your repository’s page on GitHub, you’re set.

Grading

Score: / 100



CSIS 385 Design and Analysis of Algorithms Spring 2018

Your first tasks are mostly a reminder about binary search trees as you saw them in data structures.
The BinarySearchTree class you will find in your GitHub starter repository has a few meth-
ods implemented only as stubs that you’ll need to fill in. You’ll also answer a few questions along
the way.

For testing, the main method of that class creates two binary search trees and calls the methods
you will be completing to test their functionality. The smaller tree has just 5 nodes, and you can find
an ASCII-art representation of it in a comment in the constructor. The larger tree has 1000 nodes
with values chosen randomly, but we will all get the same tree every time because the Random
object is seeded with a specific value (10).

Before you begin, familiarize yourself with the data structure and the provided methods.

Question 1:
The numDistK(int k) method is intended to return the number of nodes in the tree that
are a distance of exactly k from the root. What values would you expect to get for the small
BST for all k values below? (2 points)

small.numDistK(0) =

small.numDistK(1) =

small.numDistK(2) =

small.numDistK(3) =

small.numDistK(4) =

Question 2:
Complete the implementation of recursiveNumDistK(int k, Node v), which is
a recursive helper method used by numDistK(int k). Once the answers for the small
BST test cases match what you expect from the previous question, show your instructor your
completed code to check if the answers are correct for the large BST. (6 points)

Question 3:
For a BST with n nodes and a given value of k, describe the worst case running time and its
efficiency class, and briefly describe how you arrived at your answer. (2 points)

2



CSIS 385 Design and Analysis of Algorithms Spring 2018

Question 4:
The next method you will be working with is numWithinRange(int s, int e). This
method returns the number of values in the BST which are in the range from s to e, inclusive.
For the small BST, what answers would you expect from each call below? (2 points)

small.numWithinRange(0, 10) =

small.numWithinRange(1, 4) =

small.numWithinRange(5, 7) =

small.numWithinRange(8, 10) =

Question 5:
You will be completing the recursive helper method recursiveNumWithinRange(int
s, int e, Node v). Obviously one place you would look for a value in the desired
range is in v’s data field. For a given value of s, e, and v’s data field, under what circum-
stances would you need to search in each subtree? (3 points)

Question 6:
Complete the implementation of recursiveNumWithinRange. Once the answers for
the small BST test cases match what you expect from the earlier question, show your instruc-
tor your completed code to check if the answers are correct for the large BST. For full credit,
your code must be as efficient as possible, given your answer to the previous question. (6
points)

3



CSIS 385 Design and Analysis of Algorithms Spring 2018

Question 7:
The method removeLeaves is intended to remove every leaf node from a given BST. How
many nodes should be removed the first time this method is called on the small BST? The
second time? The third time? The fourth time? (2 points)

Question 8:
Complete the implementation of the recursive helper method
recursiveRemoveLeaves(Node v), which should remove all of the leaves in
the subtree rooted at v. Once the answers for the small BST test cases match what you
expect from the earlier question, show your instructor your completed code to check if the
answers are correct for the large BST. (6 points)

4



CSIS 385 Design and Analysis of Algorithms Spring 2018

Now, on to balanced search trees. First, a little review of AVL trees.

Question 9:
For the binary trees below, indicate which are valid AVL trees. For ones that are not, place a
star by each node at which the AVL condition is violated. (2 points)

Question 10:
Insert the value O into the given AVL Tree. Show all steps. (2 points)

Question 11:
Insert the value B into the (same) given AVL Tree. Show all steps. (2 points)

5



CSIS 385 Design and Analysis of Algorithms Spring 2018

For the next several questions, you will be working with three possible search tree approaches:
a straightforward BST, an AVL tree, and a 2-3 tree. Please note that for questions that as you
to construct a tree, you should count the number of comparisons being made as values are being
inserted.

Question 12:
Insert the values 1, 2, 3, ..., 10 into a straightforward BST. (5 points)

Question 13:
How many comparisons were needed during the entire tree construction? (2 points)

6



CSIS 385 Design and Analysis of Algorithms Spring 2018

Question 14:
Insert the values 1, 2, 3, ..., 10 into an AVL tree. Show the steps needed and label each
necessary rotation as either a single rotation or a double rotation. (8 points)

Question 15:
How many comparisons were needed during the entire tree construction? (2 points)

7



CSIS 385 Design and Analysis of Algorithms Spring 2018

Question 16:
Insert the values 1, 2, 3, ..., 10 into a 2-3 tree. Show the steps needed, including places where
a “4 node” is temporarily created. (8 points)

Question 17:
How many comparisons were needed during the entire tree construction? (2 points)

8



CSIS 385 Design and Analysis of Algorithms Spring 2018

Now suppose you were inserting the numbers 1, 2, 3, ..., 1000, into search trees.

Question 18:
Describe the shape of the straightforward BST that would result and the number of compar-
isons that would be made during its construction. (4 points)

Question 19:
Describe the shape of the AVL tree that would result and estimate the number of comparisons
that would be made during its construction. (4 points)

Question 20:
Describe the shape of the 2-3 tree that would result and estimate the number of comparisons
that would be made during its construction. (4 points)

9



CSIS 385 Design and Analysis of Algorithms Spring 2018

Suppose we were first to shuffle the numbers 1-1000 before adding them instead of adding them
in ascending order.

Question 21:
How do you expect that would affect the properties of the resulting straightforward BST? (4
points)

Question 22:
How do you expect that would affect the properties of the resulting AVL tree? (4 points)

Question 23:
How do you expect that would affect the properties of the resulting 2-3 tree? (4 points)

10



CSIS 385 Design and Analysis of Algorithms Spring 2018

Question 24:
Under what circumstances would you recommend such a “pre-shuffle” step for the construc-
tion of these kinds of trees? (4 points)

Question 25:
Suppose you want to determine if all the elements in an array are unique. For example,
the elements in array A = [6, 9, 2, 1, 0, 3, 10, 9, 5, 4] are not all unique
because the number 9 appears more than once. You could easily solve this problem with
brute force in Θ(n2) time. Come up with an asymptotically more efficient algorithm that
solves this problem. Write pseudocode for your solution below. (10 points)

ALGORITHM UNIQUEELEMENTS(A)
//Input: an array A[0..n− 1]
//Output: true if all values are unique, false if any duplicates

11


