
Computer Science 385
Design and Analysis of Algorithms
Siena College

Spring 2017

Topic Notes: Backtracking

No Algorithms course would be complete without a discussion of the n-Queens Problem.

The problem is to place n queens on an n×n chess board such that no queen can attack another in

a single move. If you are not familiar with the rules of chess, a queen can move anywhere in her

own row (i.e., rank), column (i.e., file), or either diagonal from her current location.

We’ll start by considering a fairly small instance of this problem, where n = 4, and then the

problem on a standard sized chess board where n = 8.

We have already considered some techniques that would allow us to come up with a solution here.

We could use brute force to do an exhaustive search. The most brute force we could think of is to

try all possible combinations of positions where we could place 4 queens among the 16 spaces.

How many such combinations exist? Think back to your discrete math, and we are choosing 4

values from among a set of 16, which is

(

16

4

)

=
16!

4! · 12!
= 1820

For each of these, we would need to do a non-trivial task: check that no two queens are in the same

row, column, or diagonal. Of course, the above is worst case when all we want to do is to produce

a single example. If we find a solution early in the search, we can report it and stop. To solve the

more difficult problem of listing all valid configurations of queens, we would need to consider all

of the combinations.

If we move up to the n = 8 case, this becomes:

(

64

8

)

=
64!

8! · 56!
= 4, 426, 165, 368

In general, this value grows very quickly.

(

n2

n

)

=
(n2)!

n! · (n2
− n)!

We can do better.

We can make a significant improvement, even staying with what is still an exhaustive search, if we

take into account the fact that each row will need to contain just one queen. For the n = 4 case,

this means we would have 4 choices for each of the 4 rows, resulting in the much smaller



CSIS 385 Design and Analysis of Algorithms Spring 2017

44 = 256

which is better than 1820.

For n = 8, we get

88 = 16, 777, 216

which is a huge improvement, even though we’re still looking at considering nn possible configu-

rations. That O(nn) is still an incredibly large growth rate.

But again, we can be a little more careful about using some knowledge of the problem to eliminate

parts of the search space. We have been thinking about placing one queen per row, but we can also

fairly easily limit to one queen per column. Considering the n = 4 case, we can place the queen

in the first row in any of the 4 columns. But once we’ve chosen a column for the first row, we are

left with 3 choices for the column for the the second row. Once we’ve chosen that column, there

are only two choices for the column for the third row, and that leaves just one choice for the fourth

row. This looks like a factorial, and it is. For each of these candidate layouts, we again need to

check that the queens cannot attack each other along diagonals.

Normally, we have not considered O(n!) to be a nice growth rate, but at least it’s better than O(nn).

Perhaps a greedy approach would allow us to do even better. In a greedy approach, we would

make a locally-optimal selection at each step. Let’s say that an optimal selection is simply one that

doesn’t place the next queen in a location that would be able to attack an existing queen. Further,

we will choose the lowest column in each row that results in a valid placement.

This does not lead to us finding a solution for the n = 4 case.

We need something that falls between greedy algorithms and a full exhaustive search. A process

like a greedy algorithm that lets us undo a bad move.

The kind of algorithms we consider next are called backtracking algorithms. With a backtracking

algorithm, we try different alternatives at each decision point, in turn, until we find a satisfactory

solution.

A fundamental example here is maze running. If a choice to follow one path in the maze fails

(leads to a dead end), we go back (backtrack) to the most recent decision point and try a different

direction. If all directions from a given point have led to dead ends, we backtrack further to a prior

decision point and try a different alternative.

Let’s work through this idea with the 4-Queens problem. (In-class demo.)

This can be depicted in a state space search diagram, as seen in Figure 12.2 of Levitin.

The general form of a backtracking algorithm looks like the following, where

• state is the current state of the problem (the result of moves made so far)

2



CSIS 385 Design and Analysis of Algorithms Spring 2017

• move is the next move to be attempted to get closer to a solution, which can be null if no

move could be determined

• isSolution(state) returns whether the given state is a complete solution to the

problem

• isLegal(state, move) returns whether the application of this move to this state

would generate a new legal state. Examples of illegal states would be one that requires going

through a wall in a maze or placing a queen in a position that would be able to attack queens

already placed in the state in the n-Queens problem.

• nextMove(move) returns the next move that should be tried after move (e.g., try the next

direction in a maze, the next possible square to place a queen, etc.)

• firstMove() returns the first move that would be attempted in the next step after accept-

ing a candidate move into the state.

• makeMove(state, move) creates a new state with the move added to the old state.

ALGORITHM backtracker(state, move)

if isSolution(state)

// we have a solution! return it

return state

if move = null

// path failed, return null to indicate this

return null

if not isLegal(state, move)

// cannot apply move to state, so

// try next move instead

return backtracker(state, nextMove(move))

// make move and continue

result = backtracker (makeMove(state, move), firstMove())

if result != null

return result

// the previous move failed, backtrack to try next

return backtracker(state, nextMove(move))

Specifically for the n-Queens problem, we can use backtracking as follows:

• A state is a list of k column positions, specifying where to place queens in rows 1 through

k.

3



CSIS 385 Design and Analysis of Algorithms Spring 2017

• A move is the column position at which to try to place the queen in the next row (row k + 1
when state contains k entries.

• isSolution(state) checks that the state has n entries.

• isLegal(state, move) returns whether adding a queen at column position move in

the next row in the state would result in a state that contains no pair of queens in the same

row, column, or diagonal.

• nextMove(move) returns move+1, unless move is n, in which case it returns null to

indicate that the next move would be off the edge of the board.

• firstMove() returns 1 to indicate that the first place to try to place a queen in a new row

is at column position 1.

• makeMove(state, move) returns a new list consisting of the old list with the given

move appended, representing the addition of a queen at position move in the next row.

So our algorithm becomes:

ALGORITHM nqueens(n, positions[1..k], colInNextRow)

if k = n

// we have a solution! return it

return positions

if colInNextRow = null

// path failed, return null to indicate this

return null

if not isLegal(positions, colInNextRow)

// cannot apply move to state, so

// try next move instead

return nqueens(positions, nextMove(colInNextRow))

// make move and continue

result = nqueens(positions+colInNextRow, 1)

if result != null

return result

// the previous move failed, backtrack to try next

return nqueens(positions, nextMove(colInNextRow))

where isLegal and nextMove are as described above.

4


