
Mystery Algorithm! 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
What is the output of MYSTERY when called with the graph above and start_v = 0? So that we all get the same results, 
when considering “each vertex w adjacent to v”, consider the adjacent vertices in numerical order from lowest to highest. 

7 

3 

4 5 

2 

6 

1 

0 

ALGORITHM	MYSTERY(	G	=	(V,E),		start_v	)	
						mark	all	vertices	in	V	as	unvisited	
						mystery(	start_v	)	
							
	
mystery(	v	)	
						mark	vertex		v		as	visited	
						PRINT		v		
						for	each	vertex	w	adjacent	to	v	do	
												if	w	is	not	yet	marked	as	visited		
																		mystery(	w	)	 	
	
	
	
	



Depth-first Search Algorithm 

 

7 

3 

4 5 

2 

6 

1 

0 

//	performs	a	depth-first	search	of	G		
//	starting	at	vertex	start_v	
Algorithm	DFS(	G=(V,E),	start_v		)	
						mark	all	vertices	in	V	as	unvisited	
						dfs(	start_v	)	
							
	
dfs(	v	)	
						mark	v	as	visited	
						for	each	vertex	w	adjacent	to	v	do	
												if	w	is	not	yet	marked	as	visited	
																		dfs(	w	)	 	
	
	
	
	



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Depth-first Search Tree 

Depth-first search tree: 
 
 
 
 
 
 
Tree edge: 
 
 
 
 
 
 
 
Back edge: 



Draw the depth-first search tree corresponding to the call DFS( G, 4 ) on the 
undirected graph below which is represented using adjacency lists.  When considering 
“each vertex w adjacent to v”, do so in the order in which they appear in v’s adjacency 
list.  What do you notice is different about your depth-first search tree? 
 
Graph G – Adjacency Lists Representation 
 

Vertex Adjacency List 
0 à 3 à 2 à 4 
1 à 6 à 7 
2 à 0 à 3 à 5 à 4 
3 à 0 à 2 
4 à 2 à 0 
5 à 2 
6 à 7 à 1 
7 à 1 à 6 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

//	performs	a	depth-first	search	of	G		
//	starting	at	vertex	start_v	
Algorithm	DFS(	G=(V,E),	start_v		)	
						mark	all	vertices	in	V	as	unvisited	
						dfs(	start_v	)	
							
	
dfs(	v	)	
						mark	v	as	visited	
						for	each	vertex	w	adjacent	to	v	do	
												if	w	is	not	yet	marked	as	visited	
																		dfs(	w	)	 	
	
	
	
	



 
 

• A graph is connected if there is a path between every pair of vertices. What 
happens when you start DFS(G, start_v ) on a graph that is not connected?  How 
can you use DFS to determine if a graph is connected or not? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Can you come up with a real world application involving a graph for which it 
would be useful to know if the graph is connected.  Explain what the vertices and 
edges represent in your application and explain why knowing if it is connected is 
useful. 



--- DFS Implementation Using Adjacency Lists --- 
public class UndirectedGraph { 
   private Vertex[] vertices; 
  
   private class Vertex { 
       private Edge head; 
 
 
   } 

private class Edge { 
       private int dst; 
       private Edge next;  
       private Edge(int d, Edge n) {dst=d; next=n;} 

} 
   public UndirectedGraph( int numVerts ) {…} 
   public void addEdge( int v, int w ) {…}  
   public void removeEdge( int v, int w ) {…} 
 
   public boolean connected( ) { 
  // mark all vertices as unvisited 
 
 
 
 
 
  // invoke dfs starting at vertex 0 
 
 
       // check if all vertices were visited 
 
 
 
 
 
   }



   public void dfs( int v ) { 
      // mark v as visited 
       
 
 
      // for each vertex w adjacent to v do 
      //     if w is not yet marked as visited 
      //          dfs(w)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   } 



Running Time of Recursive DFS  
When Graph is Represented using Adjacency Lists   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

//	performs	a	depth-first	search	of	G		
//	starting	at	vertex	start_v	
Algorithm	DFS(	G=(V,E),	start_v		)	
						mark	all	vertices	in	V	as	unvisited	
						dfs(	start_v	)	
							
	
dfs(	v	)	
						mark	v	as	visited	
						for	each	vertex	w	adjacent	to	v	do	
												if	w	is	not	yet	marked	as	visited	
																		dfs(	w	)	 	
	
	
	
	





Breadth-first Search 
 
For the graph below, trace through 
the execution of the Breadth-first 
search algorithm starting at vertex B.  
Show the printed output in the chart.  
Then number the graph vertices in 
the order in which they are marked 
as visited by the algorithm.  So that 
we all get the same answer, when 
you consider “each vertex w 
adjacent to v”, consider the adjacent 
vertices in alphabetical order. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Output Printed by BFS Algorithm Above 

 
    v 

 
contents of Q (with the front item on left) 

  

  

  

  

  

  

  

  

  

  

Algorithm	BFS(	G=(V,E)	,	start_v		)	
						mark	each	vertex	in	V	as	unvisited	
						mark	start_v	as	visited	
						let	Q	be	an	empty	queue	
						Q.enqueue(	start_v	)	
						while	Q	is	not	empty	
													v	ß	Q.dequeue()	
												for	each	vertex	w	in	V	adjacent	to	v	do	
																		if	w	is	unvisited		
																								mark	w	as	visited	
																								Q.enqueue(w)	
												print	v	and	contents	of	Q 

A 

I 

B 
C 

E 

D 

G 

H 

F 



What do you notice about the order in which breadth-first search marks the vertices as visited?  (Hint 
– think about how far they are from the start vertex.) 
 
 
 
 
 
 
 
 
 
 
Suppose you want to modify bfs so that it assigns each vertex a number which is the number of 
edges it is from the start vertex.  For example,  start_v.distance should  
be set to 0 because it is the start vertex.  Each vertex w adjacent to start_v should have w.distance 
set to 1 because it is one edge away from s, and so on...  Mark modifications on the algorithm below 
that set the distance fields appropriately. 
 
  
 
 

Algorithm	BFS(	G=(V,E)	,	start_v		)	
						mark	each	vertex	in	V	as	unvisited	
						mark	start_v	as	visited	
						let	Q	be	an	empty	queue	

						Q.enqueue(	start_v	)	

						while	Q	is	not	empty	

													v	ß	Q.dequeue()	

												for	each	vertex	w	in	V	adjacent	to	v	do	

																		if	w	is	unvisited		

																								mark	w	as	visited	

																								Q.enqueue(w)	

												 
 

 


