
	

	

	

To understand what recursion is, you must first understand recursion.
― Unknown	

	

Names:	___	

	

	

Learning	goals:	

• to	be	able	to	write	a	recurrence	formula	describing	the	running	time	of	an	algorithm	
• to	be	able	to	solve	recurrence	formulas	using	the	method	of	backward	substitutions	
• to	be	able	to	count	the	worst	and	average	number	of	comparisons	made	by	binary	search	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

CSIS385 Algorithms
Lab #5 : Recurrence Formulas and Binary Search

	
1. (10	Points)	For	each	of	the	following,	give	a	recurrence	relation	that	describes	its	running	time.	For	

array	computations,	express	your	answer	in	terms	of	n,	the	number	of	array	items	between	first	and	
last	inclusive.	You	do	not	need	to	get	a	closed	form.	

	
compute1(A[first	…	last])	
	
						if	(first	=	last)	return	
					
						compute(A[first	…	last	-	1])	
							
						A[last]	=	A[last]*2	
							
	
	
compute2(A[first	…	last])	
	
						if	(first	=	last)	return	
					
						compute(A[first	…	last	-	1])	
	
						for		k		ß		first		to		last	
												A[k]	=	A[k]*	2	
	
	
compute3(A[first	…	last])	
	
						if	(first	=	last)	return	
					
						compute(A[first	…	last	-	1])	
	
						for		k		ß		first		to		last	
												for		j		ß		first		to		last	
																		A[k]	=	A[k]	+	A[j]	*	2	
	
	
compute4(A[first	…	last])	
	
						if	(first	=	last)	return	
					
						compute(A[first	…	last	-	1])	
						compute(A[first	+	1	…	last])	
	
						A[last]	=	A[last]*2	
	
	
	
cubes(n)	
				if	(n	=	1)	return	1	

Recurrence	Relation:	

T(1)	=		

T(n)	=		

Recurrence	Relation		

T(1)	=		

T(n)	=		

Recurrence	Relation		

T(1)	=		

T(n)	=		

Recurrence	Relation		

T(1)	=		

T(n)	=		

Recurrence	Relation		

T(1)	=		

T(n)	=		

				else	return	cubes(n	–	1)	+	n*n*n	
	
	
	

2. (6	Points)	For	each	of	the	following	methods	that	print	“Hello!”,	write	a	recurrence	relation	for	the	
EXACT	number	of	times	it	prints	“Hello!”.	You	may	assume	that	n	is	a	power	of	2	and	thus	is	always	
evenly	divisible	by	2.	
	

	
Greetings(int	n)	
	 if	(n	=	1)		
	 	 print	Hello!	
	 	 print	Hello!	
									else			
	 	 for		i	ß	1	to	n	
	 	 	 print	Hello!	
	
	 	 Greetings(n/2)	
	 	 	

	
	
	
	
Greetings(int	n)	
	 if	(n	=	1)		
	 	 print	Hello!	
	 	 print	Hello!	
									else			
	 	 Greetings(n/2)	
	
	 	 for		i	ß	1	to	n	
	 	 	 print	Hello!	
	
	 	 Greetings(n/2)	
	 	 	

	
	
	
Greetings(int	n)	
	 if	(n	=	1)		return	
	 	
									else			
	 	 Greetings(n/2)	
	
	 	 print	Hello!	
	
	 	 Greetings(n/2)	
	 	 	

	

Recurrence	Relation:	

T(1)	=		

T(n)	=		

Recurrence	Relation:	

T(1)	=		

T(n)	=		

Recurrence	Relation:	

T(1)	=		

T(n)	=		

	
	 	

3. Consider	the	recurrence	formula	below.		
	

T(1)	=	3	
	
	 	 T(n)	=	T(n-1)	+	3n	
	

a. (5	Points)	Compute	the	value	of	T(4):	____________________	
	
	
	
	
	
	

b. (10	Points)	Get	a	closed	form	for	the	recurrence	using	backwards	substitution.	Show	your	work	for	
each	of	the	three	steps.		
	
Step	1:	Perform	repeated	substitutions	and	find	pattern	
	

	 	

Step	2:	Determine	the	value	of	i	that	results	in	the	base	case		
	
	
	
	
	
	
	
	
	
Step	3:	Write	the	pattern	for	the	last	substitution	step	and	simplify	to	get	a	nice	looking	formula.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

c. (3	Points)	Check	your	work	by	substituting	n=8	into	your	formula	and	seeing	if	the	results	match	what	
you	got	in	question	3a.	

	

	

	
	
	

4. Study	the	pseudocode	below.		
	

a. (3	Points)	Trace	the	algorithm	and	determine	how	many	times	it	prints	“hello”	when	it	is	invoked	with	
input	8?	________________	

	
greetings(n)	
						if	(n	=	1)		
											print	“hello”	
											print	“hello”	
						else		
											greetings(n/2)	
											greetings(n/2)	
											print	“hello”	

	
	

b. (5	Points)	Write	a	recurrence	formula	describing	exactly	how	many	times	the	algorithm	prints	“hello.”		
Assume	n	is	a	power	of	two.	

	
T(1)	=		

	
	 	 T(n)	=	
	

c. (10	Points)	Get	a	closed	form	for	your	recurrence	using	backwards	substitution.	Show	your	work	for	
each	of	the	three	steps.		
	
Step	1:	Perform	repeated	substitutions	and	find	pattern	

	

	

	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
Step	2:	Determine	the	value	of	i	that	results	in	the	base	case		
	
	
	
	
	
	
	
	
	
Step	3:	Write	the	pattern	for	the	last	substitution	step	and	simplify	to	get	a	nice	looking	formula.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

d. (3	Points)	Check	your	work	by	substituting	n=8	into	your	formula	and	seeing	if	the	results	match	what	
you	got	in	question	1a.	
	

	

	

	

	

	

	

	

5. Consider	the	recurrence	formula	below.		
	

T(1)	=	1	
	
	 	 T(n)	=	2	T(n/2)	+	n	
	

a. (5	Points)	Compute	the	value	of	T(8):	____________________	
	
	
	
	
	
	

b. (10	Points)	Get	a	closed	form	for	the	recurrence	using	backwards	substitution.	Show	your	work	for	
each	of	the	three	steps.	Assume	n	is	a	power	of	2.	
	
Step	1:	Perform	repeated	substitutions	and	find	pattern	

	 	

Step	2:	Determine	the	value	of	i	that	results	in	the	base	case		
	
	
	
	
	
	
	
	
	
Step	3:	Write	the	pattern	for	the	last	substitution	step	and	simplify	to	get	a	nice	looking	formula.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

c. (3	Points)	Check	your	work	by	substituting	n=8	into	your	formula	and	seeing	if	the	results	match	what	
you	got	in	question	2a.	

	

	

	

	

6. (5	Points)	Below	is	pseudocode	for	an	iterative	version	of	binary	search	found	in	your	text	book.		Binary	
search	is	an	example	of	a	decrease	and	conquer	algorithm.	

ALGORITHM	IterBinarySearch(A[0…n-1],	X)		//	Iterative	version	

	 //	Input:	An	array	A[0…n-1]	sorted	in	ascending	order	and	a	search	key	X	

	 //	Output:	index	of	the	element	that	is	equal	to	X,	or	-1	if	there	is	no	such	element	

	 left	ß	0	

	 rite	ß	n-1	

	 while	left	<=	rite	do	

	 	 mid	ß	 (𝑙𝑒𝑓𝑡 + 𝑟𝑖𝑡𝑒)/2 	

	 	 if	X	=	A[mid]	then	return	mid	

	 	 else	if	X	<	A[mid]	then	rite	ß	mid	-	1	

	 	 else	left	ß	mid	+	1	

	 return	-1	

	

For	the	array	below,	trace	the	execution	of	IterBinarySearch(A[0…12],	39).	Show	the	values	of	mid,	
left	and	rite	at	the	bottom	of	each	iteration	of	the	while	loop	using	the	chart	below.	

	

3	 14	 27	 31	 39	 42	 55	 70	 74	 81	 85	 93	 98	
	

	

	 mid	 left	 rite	
Starting	values	 ----	 0	 12	

End	of	1st	iteration	 	
	

	 	

End	of	2nd	iteration	 	
	

	 	

End	of	3rd	iteration	 	
	

	 	

	

	

	 	

7. Consider	the	array	of	values	below.		
	
3	 14	 27	 31	 39	 42	 55	 70	 74	 81	 85	 93	 98	
	

a. (5	Points)	What	is	the	largest	number	of	times	the	comparison		X	=	A[mid]		is	performed		by	iterative	
binary	search	in	searching	for	a	key	in	the	array	above?			

	

	

b. (5	Points)	List	all	the	keys	of	this	array	that	will	require	the	largest	number	of		X	=	A[mid]		comparisons	
when	searched	for	by	iterative	binary	search.	

	

	

	

c. (6	Points)	Find	the	average	number	of		X	=	A[mid]		comparisons	made	by	iterative	binary	search	in	a	
successful	search	of	this	array.	Assume	that	each	key	is	searched	for	with	the	same	probability.	

	

	

	

	

	

d. (6	Points)	Find	the	average	number	of	X	=	A[mid]		comparisons	made	by	iterative	binary	search	in	an	
unsuccessful	search	in	this	array.	Assume	that	searches	for	keys	in	each	of	the	14	intervals	formed	by	
the	array’s	elements	are	equally	likely.	
	
	

