
Computer Science 385
Analysis of Algorithms
Siena College
Spring 2011

Topic Notes: Introduction and Overview

Welcome to Analysis of Algorithms!

What is an Algorithm?
A possible definition: a step-by-step method for solving a problem.

An algorithm does not need to be something we run on a computerin the modern sense. The notion
of an algorithm is much older than that. But it does need to be a formal and unambiguous set of
instructions.

The good news: if we can express it as a computer program, it’sgoing to be pretty formal and
unambiguous.

Example: Computing the Max of 3 Numbers

Let’s start by looking at a couple of examples and use them to determine some of the important
properties of algorithms.

Our first example is finding the maximum among three given numbers.

Any of us could write a program in our favorite language to do this:

int max(int a, int b, int c) {
if (a > b) {

if (a > c) return a;
else return c;

}
else {

if (b > c) return b;
else return c;

}
}

The algorithm implemented by this function or method hasinputs (the three numbers) and one
output(the largest of those numbers).

The algorithm is definedpreciselyand isdeterministic.

This notion of determinism is a key feature: if we present thealgorithm multiple times with the
same inputs, it follows the same steps, and obtains the same outcome.



CS 385 Analysis of Algorithms Spring 2011

A non-deterministicprocedure could produce different outcomes on different executions, even
with the same inputs.

Code is naturally deterministic – how can we introduce non-determinism?

It’s also important that our algorithm will eventually terminate. In this case, it clearly does. In
fact, there are no loops, so we know the code will execute in just a few steps. An algorithm is
supposed to solve a problem, and it’s not much of a solution ifit runs forever. This property is
calledfiniteness.

Finally, our algorithm gives the right answer. This very important property,correctness, is not
always easy to achieve.

It’s even harder toverifycorrectness. How can you tell if you algorithm works for all possible valid
inputs? An important tool here: formalproofs.

A good algorithm is alsogeneral. It can be applied to all sets of possible input. If we did not care
about genenerality, we could produce an algorithm that is quite a bit simpler. Consider this one:

int max(int a, int b) {
if (a > 10 && b < 10) return a;

}

This gives the right answer when it gives any answer. But it does not compute any answer for many
perfectly valid inputs.

We will also be concerned with theefficiencyin both time (number of instructions) and space
(amount of memory needed).

Why Study Algorithms?

The study of algorithms has boththeoreticalandpractical importance.

Computer science is about problem solving and these problemsare solved by applying algorithmic
solutions.

Theory gives us tools to understand the efficiency and correctness of these solutions.

Practically, a study of algorithms provides an arsenal of techniques and approaches to apply to the
problems you will encounter. And you will gain experience designing and analyzing algorithms
for cases when known algorithms do not quite apply.

We will consider both thedesignandanalysisof algorithms, and will implement and execute some
of the algorithms we study.

We said earlier that both time and space efficiency of algorithms are important, but it is also impor-
tant to know if there are other possible algorithms that might be better. We would like to establish
theoreticallower boundson the time and space needed by any algorithm to solve a problem, and
to be able to prove that a given algorithm isoptimal.

2



CS 385 Analysis of Algorithms Spring 2011

Some Course Topics

Some of the problems whose algorithmic solutions we will consider include:

• Searching

• Shortest paths in a graph

• Minimum spanning tree

• Primality testing

• Traveling salesman problem

• Knapsack problem

• Chess

• Towers of Hanoi

• Sorting

• Program termination

Some of the approaches we’ll consider:

• Brute force

• Divide and conquer

• Decrease and conquer

• Transform and conquer

• Greedy approach

• Dynamic programming

• Backtracking and Branch and bound

• Space and time tradeoffs

The study of algorithms often extends to the study of advanced data structures. Some should be
familiar; others likely will be new to you:

• lists (arrays, linked, strings)

• stacks/queues

• priority queues

3



CS 385 Analysis of Algorithms Spring 2011

• graph structures

• tree structures

• sets and dictionaries

Finally, the course will often require you to write formal analysis and often proofs. You will
practice your technical writing. As part of this, you will gain experience with the mathematical
typesetting software LATEX.

Pseudocode
We will spend a lot of time looking at algorithms expressed aspseudocode.

Unlike a real programming language, there is no formal definition of “pseudocode”. In fact, any
given textbook is likely to have its own style for pseudocode.

Our text has a specific pseudocode style. My own style looks more like Java or C++ code. I will
not be picky about the pseudocode style you use as long as it’sclear what you mean.

A big advantage of using pseudocode is that we do not need to define types of all variable or
complex structures.

Example: Greatest Common Denominator
We first consider a very simple but surprisingly interestingexample: computing a greatest common
denominator (or divisor) (GCD).

Recall the definition of the GCD:

The gcd ofm andn is the largest integer that divides bothm andn evenly.

For example: gcd(60,24) = 12, gcd(17,13) = 1, gcd(60,0) = 60.

One common approach to finding the gcd isEuclid’s Algorithm, specified in the third century B.C.
by Euclid of Alexandria.

Euclid’s algorithm is based on repeated application of the equality:

gcd(m,n) = gcd(n, m modn)

until the second number becomes 0, which makes the problem trivial.

Example: gcd(60,24) = gcd(24,12) = gcd(12,0) = 12

More precisely, application of Euclid’s Algorithm followsthese steps:

Step 1 If n = 0, returnm and stop; otherwise go to Step 2

4



CS 385 Analysis of Algorithms Spring 2011

Step 2 Divide m by n and assign the value of the remainder tor

Step 3 Assign the value ofn to m and the value ofr to n. Go to Step 1.

And a pseudocode description:

// m,n are non-negative, not both zero
Euclid(m, n) {

while (n != 0) {

r = m mod n
m = n
n = r

}
return m

}

It may not be obvious at first that this algorithm must terminate.

How can we convince ourselves that it does?

• the second number (n) gets smaller with each iteration and can never become negative

• so the second number in the pair eventually becomes 0, at which point the algorithm stops.

Euclid’s Algorithm is just one way to compute a GCD. Let’s lookat a few others:

Consecutive integer checking algorithm: check all of the integers, in decreasing order, starting
with the smaller of the two input numbers, for common divisibilty.

Step 1 Assign the value of min{m,n} to t

Step 2 Divide m by t. If the remainder is 0, go to Step 3; otherwise, go to Step 4

Step 3 Divide n by t. If the remainder is 0, returnt and stop; otherwise, go to Step 4

Step 4 Decreaset by 1 and go to Step 2

This algorithm will work. It always stops because every timearound, Step 4 is performed, which
decreasest. It will eventually becomet=1, which is always a common divisor.

Let’s run through the computation of gcd(60,24):

Step 1 Sett=24

5



CS 385 Analysis of Algorithms Spring 2011

Step 2 Divide m=60 byt=24 and check the remainder. It is not 0, so we proceed to Step 4

Step 4 Sett=23, proceed to Step 2

Step 2 Divide m=60 byt=23 and check the remainder. It is not 0, so we proceed to Step 4

Step 4 Sett=22, proceed to Step 2

Step 2 Divide m=60 byt=22 and check the remainder. It is not 0, so we proceed to Step 4

Step 4 Sett=21, proceed to Step 2

Step 2 Divide m=60 byt=21 and check the remainder. It is not 0, so we proceed to Step 4

Step 4 Sett=20, proceed to Step 2

Step 2 Divide m=60 byt=20 and check the remainder. It is 0, so we proceed to Step 3

Step 3 Divide n=24 byt=20 and check the remainder. It is not 0, so we proceed to Step 4

Step 4 Sett=19, proceed to Step 2

Step 2 Divide m=60 byt=19 and check the remainder. It is not 0, so we proceed to Step 4

Step 4 Sett=18, proceed to Step 2

Step 2 Divide m=60 byt=18 and check the remainder. It is not 0, so we proceed to Step 4

Step 4 Sett=17, proceed to Step 2

Step 2 Divide m=60 byt=17 and check the remainder. It is not 0, so we proceed to Step 4

Step 4 Sett=16, proceed to Step 2

Step 2 Divide m=60 byt=16 and check the remainder. It is not 0, so we proceed to Step 4

Step 4 Sett=15, proceed to Step 2

Step 2 Divide m=60 byt=15 and check the remainder. It is 0, so we proceed to Step 3

Step 3 Divide n=24 byt=15 and check the remainder. It is not 0, so we proceed to Step 4

Step 4 Sett=14, proceed to Step 2

Step 2 Divide m=60 byt=14 and check the remainder. It is not 0, so we proceed to Step 4

Step 4 Sett=13, proceed to Step 2

Step 2 Divide m=60 byt=13 and check the remainder. It is not 0, so we proceed to Step 4

Step 4 Sett=12, proceed to Step 2

Step 2 Divide m=60 byt=12 and check the remainder. It is 0, so we proceed to Step 3

6



CS 385 Analysis of Algorithms Spring 2011

Step 3 Divide n=24 byt=12 and check the remainder. It is 0, so we returnt=12 as our gcd

However, it does not work if one of our input numbers is 0 (unlike Euclid’s Algorithm). This is a
good example of why we need to be careful to specify valid inputs to our algorithms.

Another method is one you probably learned in around 7th grade.

Step 1 Find the prime factorization ofm

Step 2 Find the prime factorization ofn

Step 3 Find all the common prime factors

Step 4 Compute the product of all the common prime factors and returnit as gcd(m,n)

So for our example to compute gcd(60,24):

Step 1 Compute prime factorization of 60: 2, 2, 3, 5

Step 2 Compute prime factorization of 24: 2, 2, 2, 3

Step 3 Common prime factors: 2, 2, 3

Step 4 Multiply to get our answer: 12

While this took only a total of 4 steps, the first two steps are quite complex. Even the third is
not completely obvious. The description lacks an importantcharacteristic of a good algorithm:
precision.

We could not easily write a program for this without doing more work. Once we work through
these, it seems that this is going to be a more complicated method.

We can accomplish the prime factorization in a number of ways. We will consider one known as
thesieve of Eratosthenes:

Sieve(n) {
for p = 2 to n { // set array values to their index

A[p] = p
}
for p = 2 to floor(sqrt(n)) {

if A[p] != 0 { //p hasn’t been previously eliminated from the list
j = p * p
while j <= n {

A[j] = 0 //mark element as eliminated
j = j + p

}
}
// nonzero entries of A are the primes

7



CS 385 Analysis of Algorithms Spring 2011

Given this procedure to determine the primes up to a given value, we can use those as our candidate
prime factors in steps 1 and 2 of the middle school gcd algorithm. Note that each prime may be
used multiple times.

So in this case, the seemingly simple middle school procedure ends up being quite complex, since
we need to fill in the vague portions.

Fundamental Data Structures
Before we get into algorithms, we will review and/or introduce some of the data structures we will
be using all semester.

Linear Structures

The basiclinear structuresare your standard “one-dimensional”list structures:arrays, linked lists,
andstrings.

Some characteristics of arrays:

• allow efficient contiguous storage of a collection of data

• efficient direct access to an arbitrary element byindex

• cost of add/remove depends on index

Strings are usually built using arrays, and normally consist of bits or characters.

Important operations on strings include finding the length (whose efficiency depends on whether
the strings iscountedor null-terminated), comparing, and concatenating.

Some characteristics of linked lists:

• data stored in alist nodealong with a reference to the next list node (and to the previous one
for adoubly linked list)

• cost of access/add/remove depends on position within the list

• lends itself to an efficienttraversal

These basic structures are used for many purposes, including as building blocks for more restrictive
linear structures:stacksandqueues.

For a stack, additions (pushes) and removals (pops) are allowed only at one end (thetop), meaning
those operations can be made to be very efficient. A stack is alast-in first-out (LIFO)structure.

For a queue, additions (enqueues) are made to one end (therear of the queue) and removals (de-
queues) are made to the other end (thefront of the queue). Again, this allows those operations to
be made efficient. A queue is afirst-in first-out (FIFO)structure.

8



CS 385 Analysis of Algorithms Spring 2011

A variation on a queue is that of apriority queue, where each element is given a “ranking” and the
highest-ranked item is the only one allowed to be removed, regardless of the order of insertion. A
clever implementation using another structure called aheapcan make both the insert and remove
operations on a priority queue efficient.

Graphs

A graphG is a collection ofnodesor vertices, in a setV , joined byedgesin a setE. Vertices have
labels. Edges can also have labels (which often representweights). Such a graph would be called
aweighted graph.

The graph structure represents relationships (the edges) among the objects stored (the vertices).

H

A

B C
D

E

F
G

4
7

1

3

5

8
11

2

• Two vertices areadjacentif there exists an edge between them.

e.g., A is adjacent to B, G is adjacent to E, but A is not adjacentto C.

• A path is a sequence of adjacent vertices.

e.g., A-B-C-F-B is a path.

• A simple pathhas no vertices repeated (except that the first and last may bethe same).

e.g., A-B-C-E is a simple path.

• A simple path is acycleif the first and last vertex in the path are same.

e.g., B-C-F-B is a cycle.

• Directed graphs(or digraphs) differ from undirected graphsin that each edge is given a
direction.

• Thedegreeof a vertex is the number of edges incident on that vertex.

e.g., the degree of C is 3, the degree of D is 1, the degree of H is0.

For a directed graph, we have more specificout-degreeandin-degree.

9



CS 385 Analysis of Algorithms Spring 2011

• Two verticesu andv areconnectedif a simple path exists between them.

• A subgraphS is aconnected componentiff there exists a path between every pair of vertices
in S.

e.g.,{A,B,C,D,E,F,G} and{H} are the connected components of our example.

• A graph isacyclic if it contains no cycles.

• A graph iscompleteif every pair of vertices is connected by an edge.

There are two principal ways that a graph is usually represented:

1. anadjacency matrix, or

2. adjacency lists.

As a running example, we will consider an undirected graph where the vertices represent the states
in the northeastern U.S.: NY, VT, NH, ME, MA, CT, and RI. An edge exist between two states if
they share a common border, and we assign edge weights to represent the length of their border.

We will represent this graph as both an adjacency matrix and an adjacency list.

In an adjacency matrix, we have a two-dimensional array, indexed by the graph vertices. Entries
in this array give information about the existence or non-existence of edges.

We represent a missing edge withnull and the existence of an edge with a label (often a positive
number) representing the edge label (often representing a weight).

Adjacency matrix representation of NE graph
NY VT NH ME MA CT RI

NY null 150 null null 54 70 null
VT 150 null 172 null 36 null null
NH null 172 null 160 86 null null
ME null null 160 null null null null
MA 54 36 86 null null 80 58
CT 70 null null null 80 null 42
RI null null null null 58 42 null

If the graph is undirected, then we could store only the lower(or upper) triangular part, since the
matrix is symmetric.

An adjacency list is composed of a list of vertices. Associated with each each vertex is a linked list
of the edges adjacent to that vertex.

10



CS 385 Analysis of Algorithms Spring 2011

EdgesVertices

NY

VT

NH

ME

MA

CT

RI

MA/54 CT/70VT/150

NY/150 NH/172 MA/36

VT/172 ME/160 MA/86

NH/160

NY/54 VT/36 NH/86 CT/80 RI/58

NY/70 MA/80 RI/42

MA/58 CT/42

Trees

In a linear structure, every element has unique successor.

In a tree, an element may have many successors.

We usually draw trees upside-down in computer science.

You won’t see trees in nature that grow with their roots at thetop (but you can see some at Mass
MoCA over in North Adams).

One example of a tree is anexpression tree:

The expression

(2*(4-1))+((2+7)/3)

can be represented as

+
/ \

--- ----
/ \

* /
/ \ / \
2 - + 3

/ \ / \
4 1 2 7

11



CS 385 Analysis of Algorithms Spring 2011

Once we have an expression tree, how can we evaluate it?

We evaluate left subtree, then evaluate right subtree, thenperform the operation at root. The
evaluation of subtrees is recursive.

Another example is a tree representing a tournament bracket:

1
1 2

1 4 2 3
1 8 4 5 2 7 3 6
1 16 8 9 4 13 5 12 2 15 7 10 3 14 6 11

(acompleteandfull tree)

or

1
1 2

1 4 2 3
1 8 4 5 2 7 3 6

8 9 5 12 7 10 6 11

(neither complete nor full)

There are a lot of terms we will likely encounter when dealingwith tree structures:

A tree is either empty or consists of anode, called theroot node, together with a collection of
(disjoint) trees, called itssubtrees.

• An edgeconnects a node to its subtrees

• The roots of the subtrees of a node are said to be thechildrenof the node.

• There may be many nodes without any successors: These are called leavesor leaf nodes.
The others are calledinterior nodes.

• All nodes except root have unique predecessor, orparent.

• A collection of trees is called aforest.

Other terms are borrowed from the family tree analogy:

• sibling, ancestor, descendant

Some other terms we’ll use:

12



CS 385 Analysis of Algorithms Spring 2011

• A simple pathis series of distinct nodes such that there is an edge betweeneach pair of
successive nodes.

• Thepath lengthis the number of edges traversed in a path (equal to the numberof nodes on
the path - 1)

• Theheight of a nodeis length of the longest path from that node to a leaf.

• Theheight of the treeis the height of its root node.

• Thedepth of a nodeis the length of the path from the root to that node.

• Thedegree of a nodeis number of its direct descendents.

• The idea of thelevelof a node defined recursively:

– The root is at level 0.

– The level of any other node is one greater than the level of itsparent.

Equivalently, the level of a node is the length of a path from the root to that node.

We often encounterbinary trees– trees whose nodes are all have degree≤ 2.

We will also orient the trees: each subtree of a node is definedas being either theleft or right.

Iterating over all values in linear structures is usually fairly easy. Moreover, one or two orderings
of the elements are the obvious choices for our iterations. Some structures, like an array, allow us
to traverse from the start to the end or from the end back to thestart very easily. A singly linked
list however, is most efficiently traversed only from the start to the end.

For trees, there is no single obvious ordering. Do we visit the root first, then go down through the
subtrees to the leaves? Do we visit one or both subtrees before visiting the root?

There are four standardtree traversals, considered here in terms of binary trees (though most can
be generalized):

1. preorder: visit the root, then visit the left subtree, then visit the right subtree.

2. in-order visit the left subtree, then visit the root, then visit the right subtree.

3. postorder: visit the left subtree, then visit the right subtree, then visit the root.

4. level-order: visit the node at level 0 (the root), then visit all nodes at level 1, then all nodes
at level 2, etc.

For example, consider the preorder, in-order, and postorder traversals of the expression tree

13



CS 385 Analysis of Algorithms Spring 2011

/

* 2
+ -
4 3 10 5

• preorder leads to prefix notation:
/ * + 4 3 - 10 5 2

• in-order leads to infix notation:
4 + 3 * 10 - 5 / 2

• postorder leads to postfix notation:
4 3 + 10 5 - * 2 /

Sets and Dictionaries

A set, just like in mathematics, is a collection of distinctelements.

There are two main ways we might implement a set.

If there is a limited, known group of possible elements (auniversal set) U , we can represent any
subsetS by using abit vectorwith the bit at a position representing whether the element at that
position inU is in the subsetS.

If there is no universal set, or the universal set is too large(meaning the bit vector would also be
large, even for small subsets), a linear structure such as a linked list of the elements of the set can
be used.

A dictionary is a set (ormultiset, if we allow multiple copies of the same element) which is de-
signed for efficient addition, deletion, and search operations. The specific underlying implementa-
tion (array, list, sorted array, tree structure) depends onthe expected frequency of the operations.

We will consider many of these data structures more carefully, and will see several more advanced
data structures later in the couese.

14


