Computer Science 385

Analysis of Algorithms
SIENAcollege siena College

Computer Science Sprlng 2011

Topic Notes: Introduction and Overview

Welcome to Analysis of Algorithms!

What is an Algorithm?
A possible definition: a step-by-step method for solving@bpgm.

An algorithm does not need to be something we run on a comjputiee modern sense. The notion
of an algorithm is much older than that. But it does need to h@madl and unambiguous set of
instructions.

The good news: if we can express it as a computer prograngatisy to be pretty formal and
unambiguous.

Example: Computing the Max of 3 Numbers

Let’s start by looking at a couple of examples and use theneterthine some of the important
properties of algorithms.

Our first example is finding the maximum among three given rensib

Any of us could write a program in our favorite language to his:t

int mx(int a, int b, int ¢) {
if (a>b) {
if (a >c) return a;
el se return c;
}
el se {
if (b >c) return b;
el se return c;
}
}

The algorithm implemented by this function or method hgsuts (the three numbers) and one
output(the largest of those numbers).

The algorithm is definegreciselyand isdeterministic

This notion of determinism is a key feature: if we presentdlgorithm multiple times with the
same inputs, it follows the same steps, and obtains the satoeroe.

CS 385 Analysis of Algorithms Spring 2011

A non-deterministigorocedure could produce different outcomes on differecetions, even
with the same inputs.

Code is naturally deterministic — how can we introduce notemenism?

It's also important that our algorithm will eventually teimate. In this case, it clearly does. In
fact, there are no loops, so we know the code will executeshgufew steps. An algorithm is
supposed to solve a problem, and it's not much of a solutiagnriins forever. This property is
calledfiniteness

Finally, our algorithm gives the right answer. This very oniant propertycorrectnessis not
always easy to achieve.

It's even harder toerify correctness. How can you tell if you algorithm works for abpible valid
inputs? An important tool here: formpftoofs

A good algorithm is alsgeneral It can be applied to all sets of possible input. If we did rextec
about genenerality, we could produce an algorithm thatite gubit simpler. Consider this one:

int max(int a, int b) {
if (a>10 & b < 10) return a;
}

This gives the right answer when it gives any answer. But isau# compute any answer for many
perfectly valid inputs.

We will also be concerned with thefficiencyin both time (number of instructions) and space
(amount of memory needed).

Why Study Algorithms?
The study of algorithms has botheoreticalandpracticalimportance.

Computer science is about problem solving and these proldezrsolved by applying algorithmic
solutions.

Theory gives us tools to understand the efficiency and coress of these solutions.

Practically, a study of algorithms provides an arsenal dimgjues and approaches to apply to the
problems you will encounter. And you will gain experienceidaing and analyzing algorithms
for cases when known algorithms do not quite apply.

We will consider both thelesignandanalysisof algorithms, and will implement and execute some
of the algorithms we study.

We said earlier that both time and space efficiency of algoritare important, but it is also impor-
tant to know if there are other possible algorithms that migthbetter. We would like to establish
theoreticallower boundn the time and space needed by any algorithm to solve a pnolaled
to be able to prove that a given algorithnojstimal

CS 385 Analysis of Algorithms Spring 2011

Some Course Topics

Some of the problems whose algorithmic solutions we willsider include:

e Searching

e Shortest paths in a graph

e Minimum spanning tree

e Primality testing

e Traveling salesman problem
e Knapsack problem

e Chess

e Towers of Hanoi

e Sorting

e Program termination
Some of the approaches we’ll consider:

e Brute force

e Divide and conquer

e Decrease and conquer

e Transform and conquer

e Greedy approach

e Dynamic programming

e Backtracking and Branch and bound

e Space and time tradeoffs
The study of algorithms often extends to the study of advamzga structures. Some should be
familiar; others likely will be new to you:

e lists (arrays, linked, strings)

e stacks/queues

e priority queues

CS 385 Analysis of Algorithms Spring 2011

e graph structures
e tree structures
e sets and dictionaries
Finally, the course will often require you to write formalaysis and often proofs. You will

practice your technical writing. As part of this, you willigeexperience with the mathematical
typesetting software'eX.

Pseudocode
We will spend a lot of time looking at algorithms expressegssudocode

Unlike a real programming language, there is no formal didimiof “pseudocode”. In fact, any
given textbook is likely to have its own style for pseudocode

Our text has a specific pseudocode style. My own style look®rike Java or C++ code. | will
not be picky about the pseudocode style you use as long ateitis what you mean.

A big advantage of using pseudocode is that we do not needfitwediypes of all variable or
complex structures.

Example: Greatest Common Denominator

We first consider a very simple but surprisingly interesergmple: computing a greatest common
denominator (or divisor) (GCD).

Recall the definition of the GCD:
The gcd ofm andn is the largest integer that divides bathandn evenly.
For example: gcd(60,24) = 12, gcd(17,13) = 1, gcd(60,0) = 60.

One common approach to finding the gcé&igclid’s Algorithm specified in the third century B.C.
by Euclid of Alexandria.

Euclid’s algorithm is based on repeated application of tineadty:
gcd(n,n) = gcd@, m modn)

until the second number becomes 0, which makes the probieial.tr
Example: gcd(60,24) = gcd(24,12) = gcd(12,0) =12
More precisely, application of Euclid’s Algorithm follovikese steps:

Step 1 If n =0, returnm and stop; otherwise go to Step 2

4

CS 385 Analysis of Algorithms Spring 2011

Step 2 Divide m by n and assign the value of the remainder-to

Step 3 Assign the value of to m and the value of ton. Go to Step 1.
And a pseudocode description:

/1 mn are non-negative, not both zero
Euclid(m n) {

while (n !'=0) {

r = mnod n
m= n
n=r
return m

It may not be obvious at first that this algorithm must terrtena

How can we convince ourselves that it does?

¢ the second number.) gets smaller with each iteration and can never become imegat

e so the second number in the pair eventually becomes 0, ahwloiat the algorithm stops.

Euclid’s Algorithm is just one way to compute a GCD. Let’s |laatka few others:

Consecutive integer checking algorithm: check all of thegets, in decreasing order, starting

with the smaller of the two input numbers, for common dimvigjb

Step 1 Assign the value of mifin,n} tot

Step 2 Divide m by t. If the remainder is 0, go to Step 3; otherwise, go to Step 4
Step 3 Divide n by t. If the remainder is 0O, returhand stop; otherwise, go to Step 4
Step 4 Decrease by 1 and go to Step 2

This algorithm will work. It always stops because every tianeund, Step 4 is performed, which
decreases It will eventually become=1, which is always a common divisor.

Let’s run through the computation of gcd(60,24):

Step 1 Sett=24

CS 385 Analysis of Algorithms Spring 2011

Step 2 Divide m=60 byt=24 and check the remainder. It is not 0, so we proceed to Step 4
Step 4 Sett=23, proceed to Step 2

Step 2 Divide m=60 byt=23 and check the remainder. It is not 0, so we proceed to Step 4
Step 4 Sett=22, proceed to Step 2

Step 2 Divide m=60 byt=22 and check the remainder. Itis not 0, so we proceed to Step 4
Step 4 Sett=21, proceed to Step 2

Step 2 Divide m=60 byt=21 and check the remainder. It is not 0, so we proceed to Step 4
Step 4 Sett=20, proceed to Step 2

Step 2 Divide m=60 byt=20 and check the remainder. It is 0, so we proceed to Step 3
Step 3 Divide n=24 byt=20 and check the remainder. It is not 0, so we proceed to Step 4
Step 4 Sett=19, proceed to Step 2

Step 2 Divide m=60 byt=19 and check the remainder. It is not 0, so we proceed to Step 4
Step 4 Sett=18, proceed to Step 2

Step 2 Divide m=60 byt=18 and check the remainder. It is not 0, so we proceed to Step 4
Step 4 Sett=17, proceed to Step 2

Step 2 Divide m=60 byt=17 and check the remainder. It is not 0, so we proceed to Step 4
Step 4 Sett=16, proceed to Step 2

Step 2 Divide m=60 byt=16 and check the remainder. It is not 0, so we proceed to Step 4
Step 4 Sett=15, proceed to Step 2

Step 2 Divide m=60 byt=15 and check the remainder. It is 0, so we proceed to Step 3
Step 3 Divide n=24 byt=15 and check the remainder. It is not 0, so we proceed to Step 4
Step 4 Sett=14, proceed to Step 2

Step 2 Divide m=60 byt=14 and check the remainder. It is not 0, so we proceed to Step 4
Step 4 Sett=13, proceed to Step 2

Step 2 Divide m=60 byt=13 and check the remainder. Itis not 0, so we proceed to Step 4
Step 4 Sett=12, proceed to Step 2

Step 2 Divide m=60 byt=12 and check the remainder. It is 0, so we proceed to Step 3

6

CS 385 Analysis of Algorithms Spring 2011

Step 3 Divide n=24 byt=12 and check the remainder. Itis 0, so we retwh2 as our gcd

However, it does not work if one of our input numbers is O (kmlEuclid’s Algorithm). This is a
good example of why we need to be careful to specify valid ispo our algorithms.

Another method is one you probably learned in around 7thegrad

Step 1 Find the prime factorization oh
Step 2 Find the prime factorization of
Step 3 Find all the common prime factors

Step 4 Compute the product of all the common prime factors and ret@sgcd(n,n)
So for our example to compute gcd(60,24):

Step 1 Compute prime factorization of 60: 2, 2, 3,5
Step 2 Compute prime factorization of 24: 2, 2, 2, 3
Step 3 Common prime factors: 2, 2, 3

Step 4 Multiply to get our answer: 12

While this took only a total of 4 steps, the first two steps argegcomplex. Even the third is
not completely obvious. The description lacks an importdrdracteristic of a good algorithm:
precision

We could not easily write a program for this without doing mavork. Once we work through
these, it seems that this is going to be a more complicatedadet

We can accomplish the prime factorization in a number of wa&ys will consider one known as
thesieve of Eratosthenes

Sieve(n) {
for p=2ton{ // set array values to their index
Alp] =p
}
for p =2 to floor(sqgrt(n)) {
if Alp] '=0{ //p hasn’t been previously elimnated fromthe |i st
] = p*p

while j <=n {
Alj] =0 //mark elenent as elim nated
j =) *tp
}
}

/'l nonzero entries of A are the prines

7

CS 385 Analysis of Algorithms Spring 2011

Given this procedure to determine the primes up to a givamevale can use those as our candidate
prime factors in steps 1 and 2 of the middle school gcd algaritNote that each prime may be
used multiple times.

So in this case, the seemingly simple middle school proeeénds up being quite complex, since
we need to fill in the vague portions.

Fundamental Data Structures

Before we get into algorithms, we will review and/or introédlsome of the data structures we will
be using all semester.

Linear Structures

The basidinear structuresare your standard “one-dimensionast structuresarrays linked lists
andstrings

Some characteristics of arrays:

¢ allow efficient contiguous storage of a collection of data
o efficient direct access to an arbitrary elementrimex

e cost of add/remove depends on index

Strings are usually built using arrays, and normally cdnibits or characters.

Important operations on strings include finding the lengthdse efficiency depends on whether
the strings isountedor null-terminated, comparing, and concatenating.

Some characteristics of linked lists:

e data stored in &st nodealong with a reference to the next list node (and to the pre/ane
for adoubly linked lis}

e cost of access/add/remove depends on position withinghe li

e lends itself to an efficiertraversal

These basic structures are used for many purposes, ingladibuilding blocks for more restrictive
linear structuresstacksandqueues

For a stack, additiongp(sheyand removalsgop9 are allowed only at one end (thep), meaning
those operations can be made to be very efficient. A staclkaist-an first-out (LIFO)structure.

For a queue, additiongfqueuesare made to one end (thear of the queue) and removaldd-
gueue¥ are made to the other end (thrent of the queue). Again, this allows those operations to
be made efficient. A queue idfigst-in first-out (FIFO)structure.

8

CS 385 Analysis of Algorithms Spring 2011

A variation on a queue is that ofaiority queue where each element is given a “ranking” and the
highest-ranked item is the only one allowed to be removeghrdess of the order of insertion. A
clever implementation using another structure callé@apcan make both the insert and remove
operations on a priority queue efficient.

Graphs

A graph(is a collection oinodesor vertices in a setl/, joined byedgesn a setE. Vertices have
labels. Edges can also have labels (which often represeight3. Such a graph would be called
aweighted graph

The graph structure represents relationships (the edges)@the objects stored (the vertices).

F

Two vertices aradjacentif there exists an edge between them.
e.g., Ais adjacent to B, G is adjacent to E, but A is not adjattet.

A pathis a sequence of adjacent vertices.
e.g., A-B-C-F-B is a path.

A simple pathhas no vertices repeated (except that the first and last ménelsame).
e.g., A-B-C-E is a simple path.

A simple path is aycleif the first and last vertex in the path are same.
e.g., B-C-F-Bis a cycle.

Directed graphg(or digraphg differ from undirected graphsn that each edge is given a
direction.

Thedegreeof a vertex is the number of edges incident on that vertex.
e.g., the degree of C is 3, the degree of D is 1, the degree 00H is
For a directed graph, we have more spea@fit-degreeandin-degree

9

CS 385 Analysis of Algorithms Spring 2011

Two verticesu andv areconnectedf a simple path exists between them.

A subgraphS is aconnected componeifitthere exists a path between every pair of vertices
inS.
e.g.,{A,B,C,D,E,F,G and{H} are the connected components of our example.

A graph isacyclicif it contains no cycles.

A graph iscompletdaf every pair of vertices is connected by an edge.
There are two principal ways that a graph is usually reptesen

1. anadjacency matrixor

2. adjacency lists

As a running example, we will consider an undirected grapbrelthe vertices represent the states
in the northeastern U.S.: NY, VT, NH, ME, MA, CT, and RI. An edgésebetween two states if
they share a common border, and we assign edge weights &segpithe length of their border.

We will represent this graph as both an adjacency matrix aratifacency list.

In an adjacency matrix, we have a two-dimensional arrayexad by the graph vertices. Entries
in this array give information about the existence or noistexce of edges.

We represent a missing edge withl | and the existence of an edge with a label (often a positive
number) representing the edge label (often representingghty.

Adjacency matrix representation of NE graph
I | NY [VT | NH | ME | MA | CT | RI |

NY || nul | 150 | null | null 54 70 | null
VT 150 | nul | 172 | nul | 36 | null | null
NH || nul | 172 | nul | 160 86 |null | null
ME || nul |l | null 160 | null | null | null | null
MA 54 36 86 | null | null 80 58
CT 70 | null | null | null 80 | null 42
Rl || null | null | null | null 58 42 | nul |

If the graph is undirected, then we could store only the lof@emupper) triangular part, since the
matrix is symmetric.

An adjacency list is composed of a list of vertices. Ass@datith each each vertex is a linked list
of the edges adjacent to that vertex.

10

CS 385 Analysis of Algorithms Spring 2011

Vertices Edges
NY [|VT/150—|MA/54|—s CT/70

VT [NY/A150—NH/172—"|MA/36

NH [VI/A72—™ME/160—"|MA/86

ME [NH/16d

MA [INY/54—VT/36 ™|NH/86—™CT/80 ™ RI/58

CT ["INY/70[™MA/80[—™ RI/42

Rl [™|MA/58[—|CT/42

Trees

In a linear structure, every element has unique successor.
In atree an element may have many successors.

We usually draw trees upside-down in computer science.

You won't see trees in nature that grow with their roots atttpe(but you can see some at Mass
MoCA over in North Adams).

One example of a tree is @xpression tree

The expression
(2x(4-1))+((2+7)/3)

can be represented as

+
[\
/ \

* /
[\ [\
2 - + 3
[\ [\

11

CS 385 Analysis of Algorithms Spring 2011

Once we have an expression tree, how can we evaluate it?

We evaluate left subtree, then evaluate right subtree, peeform the operation at root. The
evaluation of subtrees is recursive.

Another example is a tree representing a tournament bracket

1 4 2 3
1 8 4 5 2 7 3 6
116 8 9 413 512 215 710 3 14 6 11

(acompleteandfull tree)

or

(neither complete nor full)
There are a lot of terms we will likely encounter when dealwith tree structures:

A treeis either empty or consists of reode called theroot node together with a collection of
(disjoint) trees, called itsubtrees

An edgeconnects a node to its subtrees

The roots of the subtrees of a node are said to behiidren of the node.

There may be many nodes without any successors: These &é lealvesor leaf nodes
The others are calledterior nodes

All nodes except root have unique predecessagpanent

A collection of trees is called forest

Other terms are borrowed from the family tree analogy:

e sibling, ancestor, descendant

Some other terms we’ll use:

12

CS 385 Analysis of Algorithms Spring 2011

A simple pathis series of distinct nodes such that there is an edge bete&emn pair of
successive nodes.

Thepath lengthis the number of edges traversed in a path (equal to the nuphibedes on
the path - 1)

Theheight of a nodes length of the longest path from that node to a leaf.
Theheight of the treés the height of its root node.

Thedepth of a nodés the length of the path from the root to that node.
Thedegree of a nodess number of its direct descendents.

The idea of thdevelof a node defined recursively:

— The root is at level 0.
— The level of any other node is one greater than the level gftsent.

Equivalently, the level of a node is the length of a path frben oot to that node.

We often encountdsinary trees- trees whose nodes are all have degtea

We will also orient the trees: each subtree of a node is detisdaking either thieft or right.

Iterating over all values in linear structures is usualiylyaeasy. Moreover, one or two orderings
of the elements are the obvious choices for our iterationmeSstructures, like an array, allow us
to traverse from the start to the end or from the end back tetdmt very easily. A singly linked
list however, is most efficiently traversed only from thersta the end.

For trees, there is no single obvious ordering. Do we vigtrhot first, then go down through the
subtrees to the leaves? Do we visit one or both subtreesdoe@fiting the root?

There are four standatcee traversalsconsidered here in terms of binary trees (though most can
be generalized):

p w0 NP

preorder. visit the root, then visit the left subtree, then visit tight subtree.
in-order visit the left subtree, then visit the root, then visit thghti subtree.
postorder visit the left subtree, then visit the right subtree, thesitthe root.

level-order visit the node at level O (the root), then visit all nodesesel 1, then all nodes
at level 2, etc.

For example, consider the preorder, in-order, and posttraleersals of the expression tree

13

CS 385 Analysis of Algorithms Spring 2011

+ -
4 310 5

e preorder leads to prefix notation:
/*+43-1052

e in-order leads to infix notation:
4+3*10-5/2

e postorder leads to postfix notation:
43+105-*2/

Sets and Dictionaries
A set just like in mathematics, is a collection of distirdements
There are two main ways we might implement a set.

If there is a limited, known group of possible elementsif@ersal setU, we can represent any
subsetS by using abit vectorwith the bit at a position representing whether the elemethat
position inU is in the subses.

If there is no universal set, or the universal set is too Ig¢ngeaning the bit vector would also be
large, even for small subsets), a linear structure such iagexdl list of the elements of the set can
be used.

A dictionaryis a set (omultiset if we allow multiple copies of the same element) which is de-
signed for efficient addition, deletion, and search openati The specific underlying implementa-
tion (array, list, sorted array, tree structure) dependtherexpected frequency of the operations.

We will consider many of these data structures more cakefutid will see several more advanced
data structures later in the couese.

14

