Computer Science 385

Analysis of Algorithms
SIENAcollege siena College

Computer Science Sprlng 2011

Topic Notes: Graph Algorithms

Our next few topics involve algorithms that operate on grsiplictures.

Reachability

As a simple example of something we can do with a graph, werdéte the subset of the vertices
of a graphG = (V, E') which are reachable from a given verteRy traversing existing edges.

A possible application of this is to answer the question “rehean we fly to from ALB?”. Given
a directed graph where vertices represent airports andsedgmect cities which have a regularly-
scheduled flight from one to the next, we compute which otlmpiogs you can fly to from the
starting airport. To make it a little more realistic, perbaye restrict to flights on a specific airline.

For this, we will make use of a “visited” field that is includedthe “structure” implementation of
vertices and edges.

We start with all vertices markes as unvisited, and when tbequlure completes, all reachable
vertices are marked as visited.

See Example:
“jteresco/shared/cs385/examples/Reachability

This will visit the vertices starting from in a breadth-first order
If we replacetoVisit by a stack, we will visit vertices in depth-first order

A recursive version implementation of depth-first reaclhigbwould have a stack implicit in the
recursion.

The cost of this procedure will involve at mast|V'| + | E|) operations if all vertices are reachable,
which is around(|V|?) if the graph is dense.

We can think about how to extend this to find reasonable fliggndg perhaps requiring that all
travel takes place in the same day and that there is a mininh@®® iminutes to transfer.

Transitive Closure

Taking the transitive closure of a graph involves adding dgeerom each vertex to all reachable
vertices. We could do this by computing the reachabilitygfach vertex, in turn, with the algorithm
above. This would cost a total 6f(|V]?).

A more direct approach is due to Warshall.

CS 385 Analysis of Algorithms Spring 2011

We modify the graph so that when we'’re done, for every pairesfivgesu andv such thatv is
reachable fromu, there is a direct edge fromto v.

Note that this is a destructive process! We modify our stgrgiraph.

The idea is that we build the transitive closure iterativeli{hen we start, we know that edges exist
between any vertices that are connected by a path of length 1.

We can find all pairs of vertices which are connected by a phlgngth 2 (2 edges) by looking at
each pair of vertices andv and checking, for each other vertex, whether there is anetréex
w such that: is connected ta andw is connected t@. If so, we add a direct edgeto v.

If we repeat this, we will then find pairs of vertices that weoanected by paths of length 3 in the
original graph. If we do thi$l/| times, we will have all possible paths added.

This is still an©(|V|?) algorithm, though efficiency improvements are possible.

The text presents this algorithm as an operation directlgroadjacency matrix representation of
a graph, where each entry is a boolean value indicating whetihedge exists.

warshall(A[1..n][1..n])

/I Each R{i}[1..n][1..n] is an iteration toward the closure

R{O} = A

for k=1 to n

for i=1 to n
for j=1 to n
R{KHiIl] = R{k-1}{i]l] OR
(R{k-1}i][K] AND R{k-1}KI[iI)
return R{n}

All Pairs Minimum Distance

We can expand this idea to gelioyd’s Algorithmfor computing minimum distances between all
pairs of (reachable) vertices.

For the example graph:

CS 385 Analysis of Algorithms Spring 2011

Lowell

Williamstgwn Greenfield

North Adams
21 21

Pittsfield

50

Fitchburg

Boston

Auburn Provincetown

11

Springfield

Plymouth

New Bedford

We can use the same procedure (three nested loops oveesgdE we did for Warshall's Algo-
rithm, but instead of just adding edges where they may no¢ leatisted, we will add or modify
edges to have the minimum cost path (we know of) between esich p

The text’s algorithm again works directly on the adjacenatn®, now with weights representing
the edges in the matrix.

floyd(W[1..n][1..n])
D=W /I matrix copy
for k=1 to n
for i=1 to n
for j=1 to n

Dlii] = min{D[i][j],D{]K]+DIKI[T}
return D
Like Warshall's Algorithm, this algorithm’s efficiency da isO(|V[?).
Notice that at each iteration, we are overwriting the adjagenatrix.
And we can see Floyd’s Algorithm in action using the abovepsengraph.

See Example:
“jteresco/shared/cs385/examples/MassFloyd

Minimum Spanning Tree (MST) Algorithms

Before we look at the graph algorithm, we think about a gersaais of algorithms to which they
belong:greedy algorithms

The idea of a greedy technique is one which constructs aigoltd an optimization problem one
piece at a time by a sequence of choices which must be:

e feasible

CS 385 Analysis of Algorithms Spring 2011

e |ocally optimal

e irrevocable

In some cases, a greedy approach can be used to find an opdlatadrs, but in many cases it does
not. Even in those cases, it often leads to a reasonably getiosn in much less time than would
be required to find the optimal.

In our first example, a greedy approach does find an optimatisal
The problem is to find theninimum spanning treef a weighted graph.

The spanning treeof a connected grapfy is a connected acyclic subgraph@fthat includes all
of G’s vertices.

The minimum spanning treef a weighted, connected graghis the spanning tree a¥ (it may
have many) of minimum total weight.

We can construct examples of spanning trees and find the mmiosing the graph:

a ---6---- C

I /]

I I
2 4 1
|/ I

| / I
b -3 d

The following greedy approach, known Bam’s Algorithm will compute the optimal answer as
follows:

e Start with a tredl}, consisting of any one vertex.

e We “grow” the tree one vertex at a time to produce the MST tghoa series of expanding
subtreeqd’, 1, ..., T,,.

— On each iteration, we construét,,; from 7; by adding the vertex not iff; that is
“closest” to those already if; (this is a “greedy” step).

— The algorithm will use a priority queue to help find the neanesghbor vertices to be
added at each step.

e Stop when all vertices are included in the tree.

The text proves by induction that this construction alwagsdg the MST.
Efficiency:

CS 385 Analysis of Algorithms Spring 2011

e O(|V]?) for the adjacency matrix representation of graph and ary amplementation of the
priority queue.

e O(|F|log|V|) for an adjacency list representation and a min-heap impiéation of the
priority queue.

A second optimal, greedy algorithm for finding MSTiuskal’s Algorithm is in the text and you
will consider it as part of the next problem set.

Single-Source Shortest Path

Dijkstra’s Algorithmis a procedure to find shortest paths from a given vestexa graphG to
all other vertices. The algorithm incrementally builds ®-gmaph ofG which is a tree contain-
ing shortest paths from to every other vertex in the tree. A step of the algorithm insof
determining which vertex to add to the tree next.

Basic structures needed:

1. The graphG = (V, E) to be analyzed.

2. The tree, actually stored as a mdp, Each time a shortest path to a new vertex is found,
an entry is added t@' associating that vertex name with a pair indicating thed totaimum
distance to that vertex and the last edge traversed to get the

3. A priority queue in which each element is an edgev) to be considered as a path from
a located vertex. and a vertexo which we have not yet located. The priority is the total
distance from the starting vertexto v using the known shortest path frosrto u plus the
length of (u, v).

The algorithm proceeds as follows:

T is an empty map;
PQ is an empty priority queue;
All vertices in V are marked unvisited;
Add s to T with a total distance of O and a null previous edge;
mark s as visited in G;
Add each edge (s,v) of G to PQ with appropriate value
while (T.size() < G.size() and PQ not empty)
do
nextedge = PQ.remove();
until(one vertex of nextEdge is visited and the other is unvi sited)
or until there are no more edges in PQ

/I assume nextEdge = (v,u) where v is visited (in T) and u is
unvisited (not in T)

CS 385 Analysis of Algorithms Spring 2011

Add u to T; mark u as visited in G;
Add (uyv) to T;
for each unvisited neighbor w of u
add (u,w) to PQ with appropriate weight

When the procedure finishes, should contain all vertices reachable framalong with the last
edge traverest along the shortest path frolm each such vertex.

Disclaimer: Many details still need to be considered, big ihthe essential information needed
to implement the algorithm.

Consider the following graph:

Lowell

Greenfield
Fitchburg 33

North Adams

30
21 21

o Boston
Pittsfield

Auburn Provincetown

11

Springfield

Plymouth

New Bedford

From that graph, the algorithm would construct the follogviree for a start node of Williamstown.
Costs on edges indicate total cost from the root.

CS 385 Analysis of Algorithms Spring 2011

Lowell

42 Greenfield 125

Fitchburg

North Adams

o Boston
Pittsfield

Provincetown
32

Springfield Auburn

Plymouth

New Bedford

CS 385 Analysis of Algorithms Spring 2011

We obtain this by filling in the following table, a The table below shows the evolution of the priority
map which has place names as keys and pairs inqueue. To make it easier to see how we arrived at the
dicating the distance from Williamstown and the solution, entries are not erased when removed from
last edge traversed on that shortest route as valthe queue, just marked with a number in the “Seq”

ues. column of the table entry to indicate the sequence
It is easiest to specify edges by the labels of theirin which the values were removed from the queue.
endpoints rather than the edge label itself. Those which indicate the first (and thereby, shortest)
paths to a city are shown in bold.
I Place \ (distance,last-edge) | _
I (distance,last-edge) | Seq]|
W’town (O, null) _
North Adams (5, W’town-North Adams) ®, Wlllla_mstown-North A‘?'ams) 1
Pittsfield | (21, Williamstown-Pittsfield) (21, Williamstown-Pittsfield) 2
Lee (32, Pittsfield-Lee) (26, North Adams-Plttsflgld) 3
Greenfield | (42, North Adams-Greenfield (42, North A_dar_ns-GreenfleId) >
Springfield (76, Lee-Springfield) (32, Pittsfield-Lee) 4
Fitchburg (92, Greenfield-Fitchburg) (76, Lee-Springfield) 6
Auburn (123, Springfield-Auburn) (81, Greenf_leld-S_prlngfleId) 7
Lowell (125, Fitchburg-Lowell) (92, Greenfield-Fitchburg) 8
Boston (155, Lowell-Boston) (123, Sp_rlngfleld-Auburn) 9
New Bedford | (194, Auburn-New Bedford) (124, F_|tchburg-Auburn) 10
Plymouth (195, Boston-Plymouth) (125, Fitchburg-Lowell) 11
Provincetown | (271, Plymouth-Provincetown (194, Auburn-New Bedford) 14
(170, Auburn-Boston) 13
(155, Lowell-Boston) 12
(213, Boston-New Bedford) 16

(195, Boston-Plymouth) 15
(226, New Bedford-Plymouth) 17
(271, Plymouth-Provincetown) 18

From the table, we can find the shortest path by tracing back the desired destination until we
work our way back to the source.

