
Computer Science 385
Analysis of Algorithms
Siena College
Spring 2011

Topic Notes: Decrease and Conquer

Our next class of algorithms are thedecrease-and-conquergroup.

The idea here:

1. Reduce the problem to a smaller instance

2. Solve the smaller instance

3. Modify the smaller instance solution to be a solution to the original

The main variations:

• Decrease by a constant (often by 1)

• Decrease by a constant factor (often by half)

• Variable size decrease

For example, consider variations on how to compute the valuean.

The brute-force approach would involve applying the definition and multiplyinga by itself, n

times.

A decrease-by-one approach would reduce the problem to computing the result for the problem of
sizen − 1 (computingan−1) then modifying that to be a solution to the original (by multiplying
that result bya).

A decrease-by-constant-factor (2, in this case) approach would involve computinga
n

2 and multi-
plying that result by itself to compute the answer. The only complication here is that we have to
treat odd exponents specially, leading to a rule:

a
n =















(a
n

2 )
2

if n is even

(a
n−1

2 )
2

· a if n > 1 and odd
a if n = 1

This approach will lead toO(log n) multiplications.

Insertion Sort



CS 385 Analysis of Algorithms Spring 2011

Our decrease-by-one approach to sorting is theinsertion sort.

The insertion sort sorts an array ofn elements by first sorting the firstn−1 elements, then inserting
the last element into its correct position in the array.

insertion_sort(A[0..n-1]) {
for (i=0 to n-1) {

v = A[i]
j = i-1
while (j >= 0 and A[j] > v) {
A[j+1] = A[j]
j--

}
A[j+1] = v

This is an in-place sort and is stable.

Our basic operation for this algorithm is the comparison of keys in the while loop.

We do have differences in worst, average, and best case behavior. In the worst case, the while loop
always executes as many times as possible. This occurs when each element needs to go all the way
at the start of the sorted portion of the array – exactly when the starting array is in reverse sorted
order.

The worst case number of comparisons:

Cworst(n) =
n−1
∑

i=1

i−1
∑

j=0

1 =
n−1
∑

i=1

i =
n(n − 1)

2
∈ Θ(n2)

In the best case, the inner loop needs to do just one comparison, determining that the element is
already in its correct position. This happens when the algorithm is presented with already-sorted
input. Here, the number of comparisons:

Cbest(n) =
n−1
∑

i=1

1 = n − 1 ∈ Θ(n)

This behavior is unusual – after all, how often do we attempt to sort an already-sorted array?
However, we come close in some very important cases. If we have nearly-sorted data, we have
nearly this same performance.

A careful analysis of the average case would result in:

Cavg(n) ≈
n2

4
∈ Θ(n2)

Of the simple sorting algorithms (bubble, selection, insertion), insertion sort is considered the best
option in general.

2



CS 385 Analysis of Algorithms Spring 2011

Graph Traversals
We return to graph structures for our next group of decrease-and-conquer algorithms. In particular,
we consider the problem of visiting all vertices in a graph.

The two main approaches are thedepth-first search (DFS)and thebreadth-first search (BFS).

See the text for details...

Topological Sort
Again, see the text for details...

3


