
Computer Science 385
Analysis of Algorithms
Siena College
Spring 2011

Topic Notes: Analysis Fundamentals

We will next review and expand upon some of what you know from some of your previous courses
about measuring efficiency.

Asymptotic Analysis
We want to focus on how Computer Scientists think about the differences among the costs of
various operations.

There are many ways that we can think about the “cost” of a particular computation. The most
important of which are

• computational cost: how many “basic operations” of some kind does it take to accomplish
what we are trying to do?

– If we are copying the elements of one array to another, we might count the number of
elements we need to copy.

– In other examples, we may wish to count the number of times a key operation, such as
a multiplication statement, takes place.

– We can estimate running time for a problem of sizen, T (n), by multiplying the execu-
tion time of our basic operation,cop, by the number of basic operations,C(n):

T (n) ≈ copC(n)

• space cost: how much memory do we need to use?

– may be the number of bytes, words, or some unit of data stored in a structure

The operations we’ll want to count tend to be those that happen inside of loops, or more signifi-
cantly, inside of nested loops.

Determining an exact count of operations might be useful in some circumstances, but we usually
want to look at thetrends of the operation costs as we deal with larger and larger problems sizes.

This allows us to compare algorithms or structures in a general but very meaningful way without
looking at the relatively insignificant details of an implementation or worrying about characteristics
of the machine we wish to run on.

To do this, we ignore differences in the counts which are constant and look at an overall trend as
the size of the problem is increased.

CS 385 Analysis of Algorithms Spring 2011

For example, we’ll treatn and n
2

as being essentially the same.

Similarly, 1
1000

n2, 2n2 and1000n2 are all “pretty much”n2.

With more complex expressions, we also say that only the mostsignificant term (the one with the
largest exponent) is important when we have different partsof the computation taking different
amounts of work or space. So if an algorithm usesn + n2 operations, asn gets large, then2 term
dominates and we ignore then.

In general if we have a polynomial of the forma0n
k + a1n

k−1 + ... + ak, say it is “pretty much”
nk. We only consider the most significant term.

We formalize this idea of “pretty much” usingasymptotic analysis:

Definition: A functionf(n) ∈ O(g(n)) if and only if there exist two positive constantsc andn0

such that|f(n)| ≤ c · g(n) for all n > n0.

Equivalently, we can say thatf(n) ∈ O(g(n)) if there is a constantc such that for all sufficiently
largen, |f(n)

g(n)
| ≤ c.

To satisfy these definitions, we can always choose a really hugeg(n), perhapsnnn

, but as a rule,
we want ag(n) without any constant factor, and as “small” of a function as we can.

So if bothg(n) = n andg(n) = n2 are valid choices, we chooseg(n) = n. We can think of
g(n) as an upper bound (within a constant factor) in the long-termbehavior off(n), and in this
example,n is a “tighter bound” thann2.

We also don’t care how big the constant is and how bign0 has to be. Well, at least not when
determining the complexity. We would care about those in specific cases when it comes to imple-
mentation or choosing among existing implementations, where we may know thatn is not going
to be very large in practice, or whenc has to be huge. But for our theoretical analysis, we don’t
care. We’re interested inrelative rates of growth of functions.

Common Orders of Growth

The most common “orders of growth” or “orders of complexity”are

• O(1) – for anyconstant-time operations, such as the assignment of an element in an array.
The cost doesn’t depend on the size of the array or the position we’re setting.

• O(log n) – logarithmic factors tend to come into play in “divide and conquer” algorithms.
Example: binary search in an ordered array ofn elements.

• O(n) – linear dependence on the size. This is very common, and examples include the
insertion of a new element at the beginning of an array containingn elements.

• O(n log n) – this is just a little bigger thanO(n), but definitely bigger. The most famous
examples are divide and conquer sorting algorithms, which we will look at soon.

• O(n2) – quadratic. Most naive sorting algorithms areO(n2). Doubly-nested loops often
lead to this behavior. Example: matrix-matrix addition forn × n matrices.

2

CS 385 Analysis of Algorithms Spring 2011

• O(n3) – cubic complexity. Triply nested loops will lead to this behavior.A good example
is matrix-matrix multiplication. We need to don operations (a dot product) on each ofn2

matrix entries.

• O(nk), for constantk – polynomial complexity. Ask grows, the cost of these kinds of
algorithms grows very quickly.

Computer Scientists are actually very excited to find polynomial time algorithms for seem-
ingly very difficult problems. In fact, there is a whole classof problems (NP) for which if
you could either come up with a polynomial time algorithm, nomatter how bigk is (as long
as it’s constant), or if you could prove that no such algorithm exists, you would instantly be
world famous! At least among us Computer Scientists. We will likely introduce the idea of
NP and NP-Completeness later this semester and you will encounter this in Discrete II.

• O(2n) – exponential complexity. Recursive solutions where we are searching for some “best
possible” solution often leads to an exponential algorithm. Constructing a “power set” from
a set ofn elements requiresO(2n) work. Checking topological equivalence of circuits is one
example of a problem with exponential complexity.

• O(n!) – pretty huge

• O(nn) – even more huge

Suppose we have operations with time complexityO(log n), O(n), O(n log n), O(n2), andO(2n).

And suppose the time to solve a problem of sizen is t. How much time to do problem 10, 100, or
1000 times larger?

Time to Solve Problem
size n 10n 100n 1000n

O(1) t t t t
O(log n) t > 3t ∼ 6.5t < 10t
O(n) t 10t 100t 1, 000t
O(n log n) t > 30t ∼ 650t < 10, 000t
O(n2) t 100t 10, 000t 1, 000, 000t
O(2n) t ∼ t10 ∼ t100 ∼ t1000

Note that the last line depends on the fact that the constant is 1, otherwise the times are somewhat
different.

See Example:
˜jteresco/shared/cs385/examples/EfficiencyClasses/RunTimes.java

Now let’s think about complexity from a different perspective.

Suppose we get a faster computer, 10, 100, or 1000 times faster than the one we had, or we’re
willing to wait 10, 100, or 1000 times longer to get our solution if we can solve a larger problem.
How much larger problems can be solved? If original machine allowed solution of problem of size
k in time t, then how big a problem can be solved in some multiple oft?

3

CS 385 Analysis of Algorithms Spring 2011

Problem Size
speed-up 1x 10x 100x 1000x

O(log n) k k10 k100 k1000

O(n) k 10k 100k 1, 000k
O(n log n) k < 10k < 100k < 1, 000k
O(n2) k 3k+ 10k 30k+
O(2n) k k + 3 k + 7 k + 10

For an algorithm which works inO(1), the table makes no sense - we can solve as large a problem
as we like in the same amount of time. The speed doesn’t make itany more likely that we can
solve a larger problem.

See Example:
˜jteresco/shared/cs385/examples/EfficiencyClasses/ProblemSizes.java

Examples

• Difference table,O(n2)

• Multiplication table,O(n2)

• Insertingn elements into a JavaVector or ArrayList using defaultadd , O(n)

• Insertingn elements into a JavaVector or ArrayList usingadd at position 0,O(n2)

Some algorithms will have varying complexities depending on the specific input. So we can con-
sider three types of analysis:

• Best case: how fast can an instance be if we get really lucky?

– find an item in the first place we look in a search –O(1)

– get presented with already-sorted input in a sorting procedure –O(n)

– we don’t have to expand aVector or ArrayList when adding an element at the
end –O(1)

• Worst case: how slow can an instance be if we get really unlucky?

– find an item in the last place in a linear search –O(n)

– get presented with a reverse-sorted input in a sorting procedure –O(n2)

– we have to expand aVector or ArrayList to add an element –O(n)

• Average case: how will we do on average?

– linear search – equal chance to find it at each spot or not at all– O(n)

4

CS 385 Analysis of Algorithms Spring 2011

– presented with reasonably random input to a sorting procedure –O(n log n)

– we have to expand aVector /ArrayList sometimes, complexity depends on how
we resize and the pattern of additions

Note: this isnot the average of the best and worst cases!

Basic Efficiency Classes
Big O is only one of three asymptotic notations we will use.

Informally, the three can be thought of as follows:

• O(g(n)) is set of all functions that grow at thesame rate asor slower thang(n).

• Ω(g(n)) is set of all functions that grow at thesame rate asor faster than g(n).

• Θ(g(n)) is set of all functions that grow at thesame rate asg(n).

We previously gave the formal definition ofO(g(n)):

Definition: A functionf(n) ∈ O(g(n)) if and only if there exist two positive constantsc andn0

such that|f(n)| ≤ c · g(n) for all n > n0.

Now, let’s remember how we can use this definition to prove that a function is in a particular
efficiency class.

Let’s show that
500n + 97 ∈ O(n2)

by finding appropriate constantsc andn0.

We have a great deal of freedom in selecting our constants, and we could select very large constants
that would satisfy the definition. But let’s see if we can obtain some fairly small constants.

Note that
500n + 97 ≤ 500n + n

for n ≥ 97. And
500n + n = 501n ≤ 501n2

indicating that we can usec = 501.

So,c = 501 andn0 = 97 will work.

Alternately, we could notice that

500n + 97 ≤ 500n + 97n

for n ≥ 1. And
500n + 97n = 597n ≤ 597n2

5

CS 385 Analysis of Algorithms Spring 2011

indicating a value ofc = 597 to go withn0 = 1.

Next, let’s work toward a more general result:

an2 + bn + d ∈ O(n2)

for positive constantsa, b, d.

We proceed by noting that
an2 + bn + d ≤ an2 + bn + n

for n > d, and
an2 + bn + n = an2 + (b + 1)n ≤ an2 + n2

for n > b + 1, and
an2 + n2 = (a + 1)n2

which leads us to constants ofc = a + 1 andn0 = max(d, b + 1).

Next, we consider the formal definitions ofΩ andΘ.

Definition: A functionf(n) ∈ Ω(g(n)) if and only if there exist two positive constantsc andn0

such that|f(n)| ≥ c · g(n) for all n > n0.

Definition: A functionf(n) ∈ Θ(g(n)) if and only if there exist three positive constantsc1, c2, and
n0 such thatc2 · g(n) ≤ |f(n)| ≤ c1 · g(n) for all n > n0.

Similar techniques can be used to prove membership of a function in these classes.

To show that1
2
n(n − 1) ∈ Θ(n2), we need to show both the upper and lower bounds hold.

1

2
n(n − 1) =

1

2
n2 −

1

2
n ≤

1

2
n2

for n ≥ 0. So for the right inequality (the upper bound), we can choosec1 = 1
2

andn0 = 0.

To prove the left inequality, we can observe that

1

2
n(n − 1) =

1

2
n2 −

1

2
n ≥

1

2
n2 −

1

2
n

1

2
n

whenn ≥ 2, and
1

2
n2 −

1

2
n

1

2
n =

1

2
n2 −

1

4
n2 =

1

4
n2

So for the lower bound, we can choosec2 = 1
4

but we needn0 = 2. This gives us, overall,c2 = 1
4
,

c1 = 1
2
, andn0 = 2.

Some Useful Properties

As we work with these asympotic notations, the following properties will often prove useful. We
will not prove them formally, but it’s worth convincing ourselves that these hold.

• f(n) ∈ O(f(n))

6

CS 385 Analysis of Algorithms Spring 2011

• f(n) ∈ O(g(n)) iff g(n) ∈ Ω(f(n))

• If f(n) ∈ O(g(n)) andg(n) ∈ O(h(n)), thenf(n) ∈ O(h(n))

• If f1(n) ∈ O(g1(n)) andf2(n) ∈ O(g2(n)), thenf1(n) + f2(n) ∈ O(max{g1(n), g2(n)})

Using Limits

A powerful means of comparing the orders of growth of functions involves the use of limits. In
particular, we can compare functionsf(n) andg(n) by computing the limit of their ratio:

lim
n→∞

f(n)

g(n)

Three cases commonly arise:

• 0: t(n) has a smaller order of growth thang(n), i.e., f(n) ∈ O(g(n)).

• c > 0: t(n) has the same order of growth asg(n), i.e., f(n) ∈ Θ(g(n)).

• ∞: t(n) has a larger order of growth thang(n), i.e., f(n) ∈ Ω(g(n)).

Let’s consider some examples:

1. Comparef(n) = 20n2 + n + 4 andg(n) = n3.

2. Comparef(n) = n2 andg(n) = n2 − n.

3. Comparef(n) = 2log n andg(n) = n2.

4. Comparef(n) = log(n3) andg(n) = log(n4).

5. Comparef(n) = log2(n) andg(n) = n.

Analyzing Nonrecursive Algorithms
We will next look at how to analyze non-recursive algorithms.

Our general approach involves these steps:

1. Determine the parameter that indicates the input size,n.

2. Identify the basic operation.

3. Determine the worst, average, and best cases for inputs ofsizen.

7

CS 385 Analysis of Algorithms Spring 2011

4. Specify a sum for the number of basic operation executions.

5. Simplify the sum (see Appendix A for rules you can apply).

Example 1: Finding the Maximum Element

Our first algorithm to analyze.

max_element(A[0..n-1])

maxval = A[0]
for (i=1 to n-1)

if (A[i] > maxval) maxval = A[i]

return maxval;

The input size parameter isn, the number of elements in the array.

The basic operation could be the comparison or the assignment in the for loop. We choose the
comparison since it executes on every loop iteration.

Since this basic operation executes every time through the loop regardless of the input, the best,
average, and worst cases will all be the same.

We will denote the number of comparisons asC(n). There is one comparison in each iteration of
the loop, so we can (overly formally) specify the total as:

C(n) =
n−1∑

i=1

1 = n − 1 ∈ Θ(n).

Example 2: Element Uniqueness Problem

Our next example algorithm is one that determines whether all of the elements in a given array are
distinct.

unique_elements(A[0..n-1])

for (i=0 to n-2)
for (j=i+1 to n-1)

if (A[i] == A[j]) return false

return true

8

CS 385 Analysis of Algorithms Spring 2011

Again, the input size parametern is the number of elements in the array.

The basic operation is the comparison in the body of the innerloop.

The number of times this comparison executes depends on whether and how quickly a matching
pair is located. The best case is thatA[0] andA[1] are equal, resulting in a single comparison.
The average case depends on the expected inputs and how likely matches are. We do not have
enough information to analyze this formally. So we will focus on the worst case, which occurs
when there is no match and all loops execute the maximum number of times.

How many times will the comparison occur in this case? The outer loop executesn− 1 times. For
the first execution of the inner loop, the comparison executesn−2 times. The second time around,
we don − 3 comparisons. And so on until the last iteration that executes just once.

So we compute our worst case number of comparisons:

C(n) =
n−2∑

i=0

n−1∑

j=i+1

1

=
n−2∑

i=0

[(n − 1) − (i + 1) + 1]

=
n−2∑

i=0

(n − 1 − i)

=
n−2∑

i=0

(n − 1) −
n−2∑

i=0

i

From here, we can factor out the(n−1) from the first summation and apply the second summation
rule from p. 470 to the second summation to obtain:

C(n) = (n − 1)
n−2∑

i=0

1 −
(n − 2)(n − 1)

2

= (n − 1)2 −
(n − 2)(n − 1)

2
=

2(n − 1)2

2
−

(n − 2)(n − 1)

2

=
n(n − 1)

2
∈ Θ(n2).

This isn’t surprising at all, if we think about what the loopsare doing.

Example 3: Matrix Multiplication

Recall the algorithm for multiplying twon × n matrices:

matmult(A[0..n-1][0..n-1],B[0..n-1][0..n-1])

9

CS 385 Analysis of Algorithms Spring 2011

for (i=0 to n-1)
for (j=0 to n-1)

C[i][j] = 0
for (k=0 to n-1)

C[i][j] += A[i][k] * B[k][j]

return C

The input size is measured byn, the order of the matrix.

The basic operation could be the multiplication or the addition in the innermost loop. Generally, we
would choose the multiplication, but since they both happenthe same number of times, it doesn’t
matter which we pick We just want to count the number of times that line executes.

The best, average, and worst case behavior are identical: the loops all need to execute to comple-
tion.

So we’re ready to set up our summation for the number of multiplications:

M(n) =
n−1∑

i=0

n−1∑

j=0

n−1∑

k=0

1 =
n−1∑

i=0

n−1∑

j=0

n =
n−1∑

i=0

n2 = n3.

We can go a step further and estimate a running time, if the cost of a multiplication on a given
machine iscm.

T (n) ≈ cmM(n) = cmn3.

And this can be extended to include additions (where each ofA(n) additions costsca.

T (n) ≈ cmM(n) + caA(n) = cmn3 + can
3 = (cm + ca)n

3.

Which is just a constant multiple ofn3.

Example 4: Number of Binary Digits Needed for a Number

We next consider a very different example, an algorithm to determine how many bits are needed to
represent a positive integer in binary.

binary(n)

count = 1
while (n > 1)

count++

10

CS 385 Analysis of Algorithms Spring 2011

n = floor(n/2)

return count

Our summation techniques will not work here – while this is not a recursive algorithm, the approach
here will involve recurrence relations, which are usually applied to recursive algorithm analysis.

Analyzing Recursive Algorithms
Our approach to the analysis of recursive algorithms differs somewhat. The first three steps are the
same: determining the input size parameter, identifying the basic operation, and separating best,
average, and worst case behavior.

Setting up a summation is replaced by setting up and solving arecurrence relation.

Example 1: Computing a Factorial

A simple recursive solution to findn!:

factorial(n)

if (n==0) return 1
else return n * factorial(n-1)

The size isn and the basic operation is the multiplication in the else part. There is no difference
between best, average, and worst case.

You are very familiar with recurrence relations from Discrete. The recurrence for this problem is
quite simple:

M(n) = M(n − 1) + 1

The total number of multiplications forn! is the number of multiplications for(n − 1)!, plus the 1
to get fromn − 1 to n.

We do need a stopping condition for this recurrence, just as we have a stopping condition for the
algorithm. Forn = 0, we do not need to do any multiplications, so we can add the initial condition
M(0) = 0.

We can easily determine thatM(n) = n just by thinking about this for a few minutes. But instead,
we will worth through this by using back substitution.

M(n) = M(n − 1) + 1

= [M(n − 2) + 1] + 1 = M(n − 2) + 2

= [M(n − 3) + 1] + 1 = M(n − 3) + 3

11

CS 385 Analysis of Algorithms Spring 2011

If we continue this pattern, we can get down to

M(n) = M(n − n) + n = M(0) + n = n.

Example 2: Towers of Hanoi

You are all likely to be familiar with the Towers of Hanoi.

Recall that solving an instance of this problem forn disks involves solving an instance of the
problem of sizen − 1, moving a single disk, then again solving an instance of the problem of size
n − 1. This leads to the recurrence:

M(n) = 2M(n − 1) + 1

M(1) = 1

Again, we can proceed by backward substitution.

M(n) = 2M(n − 1) + 1

= 2[2M(n − 2) + 1] + 1 = 22M(n − 2) + 2 + 1

= 22[2M(n − 3) + 1] + 2 + 1 = 23M(n − 3) + 22 + 21 + 20.

Continue this procedure until we obtain

M(n) = 2n−1M(1) + 2n−2 + 2n−3 + ... + 2 + 1

= 2n−1 + (2n−1 − 1) = 2n − 1 ∈ Θ(2n).

Example 3: Number of Binary Digits Needed for a Number

We return now to the problem of determining how many bits are needed to represent a positive
integer in binary.

We can recast the problem recursively:

binary_rec(n)

if (n == 1) return 1
else return binary_rec(floor(n/2)) + 1

12

CS 385 Analysis of Algorithms Spring 2011

In this case, we will count the number of additions,A(n). For a call to this function, we can see
thatA(1) = 0, and

A(n) = A(⌊n/2⌋) + 1

whenn > 1.

The problem is a bit complicated by the presence of the floor function. We can only be precise and
apply backward substitution only if we assume thatn is a power of 2. Fortunately, we can do this
and still get the correct order of growth (by thesmoothness rule).

So assumingn = 2k, we know thatA(1) = A(20) = 0 and

A(2k) = A(2k−1) + 1

for k > 0. So we can proceed by backward substitution.

A(2k) = A(2k−1) + 1

= [A(2k−2) + 1] + 1 = A(2k−2) + 2

= [A(2k−3) + 1] + 2 = A(2k−3) + 3

...

= A(2k−k) + k = A(20) + k = k.

Sincen = 2k, k = log2 n, so we have

A(n) = log2 n ∈ Θ(log n).

Empirical Analysis
Much of our work this semester will be a mathematical analysis of the algorithms we study. How-
ever, it is also often useful to perform anempirical analysis – counting operations in or timing an
actual execution of an algorithm.

Let’s see how we can perform a simple empirical analysis one of the algorithms we’ve considered:
matrix-matrix multiplication.

See Example:
˜jteresco/shared/cs385/examples/MatMult

Many factors make such an analysis difficult to perform with any degree of accuracy.

• System clock precision may be quite low. Some very fast operations may measure as 0.

13

CS 385 Analysis of Algorithms Spring 2011

• Subsequent runs of the same program may give different results.

– Take the average? Take the min?

– Modern operating systems are time shared – time taken by yourprogram may depend
on other things happening in the system.

• As problem sizes vary, unexpected effects from cache and/orvirtual memory may come into
play.

• When considering algorithms whose performance depends on the input values as well as size,
how do we choose data? Randomly? How best to achieve the true average case behavior?

14

