Computer Science 381
Programming Unix in C
The College of Saint Rose
Winter Immersion 2016

Lab 7: Structures in C
Due: Wednesday, January 6, 2016

In this lab you will learn about the make utility, then about C structures, a simple mechanism that
allows heterogeneous data fields to be grouped into a single entity.

Using the make Utility

Any non-trivial software development involves many iterations of editing, compiling, linking, and
running your programs. The code will be spread across multiple files. The most common mecha-
nism for managing this process when programming in C in a Unix environment is the make utility.
The actions of make are specified by rules in a Makefile.

Copy the following example to your account:

See Example:
/home/cs381/examples/make-example

You should find a small C program that demonstrates the use of multiple source files and a
Makefile. Compile the program by issuing the make command. Capture the output of the
command in make . out:

make > make.out

<4 Output Capture:
| make. out for 2 point(s)

Now, look at the contents of make . out, then at the rules and the description in the Makefile.

? Question 1:
Briefly describe how make uses the rules in the Make file to produce the executable main.
Be sure to include the series of targets, their dependencies, and the commands used to sat-
isfy those dependencies for each target. Your response should explain which lines in the
Makefile cause each command to be executed. (5 points)

From this point forward, you should write a Makefile for each of your programs. You are
strongly encouraged to do this when you first start each program rather than at the end - it is
intended to be a tool to speed your development process, so use it that way!




CSC 381 Programming Unix in C Winter Immersion 2016

Programs in Multiple Files

The make example above also demonstrated a very simple case of C code being separated into
multiple . c (implementation) and/or . h (header) files.

We next consider an unnecessarily complicated C program that computes the greatest common
denominator of two integer values that further illustrates this idea.

See Example:
/home/cs381/examples/gcd

There are lots of things to notice here:

e We have four files:

gcd. c: the implementation of the gcd function

gcd. h: a header file with a prototype for the gcd function

gcdmain.c: a main program that determines the input numbers, computes the GCD,
and prints the answer, and

Makefile: a “make file” that gives a set of rules for compiling these files into the
executable program gcdmain.

When executing, functions from both gcdmain. c (main) and gcd. c (gcd) will be used.
Both of these are included in our executable file gcdmain.

e Start with gcd. c:

— This is a very simple recursive function to compute the greatest common denominator
using the Euclidean Algorithm.

— There is no main function here, so if we try to compile this by itself as we did with
our single-file C programs, we will get an error.

? Question 2:
What happens when you try this? Give the command you used and the error
message that is produced. (2 points)

— Instead, we have gcc use “compile only” mode to generate an object file gcd . o from
gcd.c:

gcc —-c gcd.c

gcd. o is a compiled version of gcd. c, but it cannot be executed.

C (and many other languages) require a two steps for source code to be converted into
an executable. The first step compiles source code into object code, the second takes
a collection of object code files and links together the references in those files into an
executable file. (There’s much more to discuss here, but this should suffice for now.)



CSC 381 Programming Unix in C Winter Immersion 2016

e Nextup, gcd. h:

— Much like stdio.h tells the compiler what it needs to know about print f (among
other things), we have gcd. h to tell other C functions what they need to know about
the function gcd. Namely, that it’s a function that takes two ints as parameters and
returns an int.

— Any C file that contains a function that calls gcd should #include "gcd.h".
e The driver program, gcdmain. c:

— We include several header files to tell the compiler what it needs to know about C
library functions (and our gcd function) that are called by functions defined here.

— This is where our one and only ma in function is defined.

— This file includes a main function, so we might think we could compile it to an ex-
ecutable as we did with the single-file C programs we’ve used so far. If we try, we’ll
find that it doesn’t know how to find the gcd function.

? Question 3:

| Try this. Give the command you used and the error message you see. (2 points)

Again, we’ll have to compile but not link:
gcc —c gcdmain.c

This produces the object file gcdmain.o. We need to link together our two object
files, which, together, have the function definitions we need:

gcc -0 gcdmain gcdmain.o gcd.o

This gives us gcdmain, which we can run.

e The Makefile contains rules to generate a sequence of calls to gcc that will correctly
compile and link the gcdma in executable.

? Question 4:
Draw a memory diagram for this program for the case where the numbers entered are 9 and
24. Your diagram should show the state of memory (including all copies of the parameters
to each gcd recursive call that exist on the call stack) at the point where the “return b”
statement is about to be executed during the base case of the recursion. (7 points)

C structs

In addition to the readings from Chapter 6 of K&R, the following (somewhat silly) example should
help you understand structures in C.



CSC 381 Programming Unix in C Winter Immersion 2016

See Example:
/home/cs381/examples/ratios

Again, we have a number of C source code (. c) and header (.h) files. We will consider each in
turn.

The files gcd . h and gcd. c are the same as the ones you saw earlier in this lab.

The files ratio.h and ratio. c define a structure and a number of functions that have to do
with storing a ratio of two integer values.

In ratio.h, we have the definition of the structure that will hold our ratios:

typedef struct ratio {
int numerator;
int denominator;

} ratio;

There are two important things happening here. First, a structure called a struct ratio is
defined. It consists of two int values: numerator and denominator. In many ways, these
are like the instance variables of a Java class, but there are no access protections (i.e., they are not
“private” or “protected”, but the equivalent of “public”). Second, we are giving another (shorter)
name to our struct ratio: simply ratio. This is being accomplished by the typedef. In
general, a t ypede f can define a new name for any type:

typedef x y;

would define a new type named y which is just another name for an already-existing type named
X.

In our case, the t ypedef just means we can refer to variables and parameters of type st ruct
ratio assimply ratio.

The rest of the contents of ratio.h defines function prototypes for the functions that will be
defined in ratio. c that can be called from elsewhere.

As a whole, the information in ratio.h tells a C source file that would like to work with these
ratio structures everything it needs to know to compile.

Also notice that the meaningful (i.e., non-comment) contents of ratio.h are enclosed in the
following block:

#ifndef _H RATIO
#define _H RATIO

// the rest of the stuff in ratio.h

#endif



CSC 381 Programming Unix in C Winter Immersion 2016

This uses C’s preprocessor to ensure that the “rest of the stuff in ratio.h” above only gets included
once, no matter how many times we end up including the ratio.h file. There are circumstances
(such as in the programming assignment below) where a header file ends up including another
header file, and the code that includes the first also includes the second (and that’s a simple case —
it gets really messy in large projects). Without this, we will get errors about things like redefining
types or function prototypes.

In ratio.c, the four functions that operate on ratios are defined: create ratio con-
structs a new ratio given a numerator and a denominator, add_ratios takes two existing
ratios, adds them and constructs and returns a new ratio that represents their sum in low-
est terms, reduce_ratio takes an existing ratio and reduces it to lowest terms, and finally,
print_ratio takes an existing ratio and prints it in a reasonably nice format.

There are a number of things to consider in these functions. The first two functions return a value
of type ratio =. This indicates a pointer to a ratio structure. The last three functions take
one or two parameters of this same type, ratio x.

Perhaps the most important thing to note here is how we allocate the memory for these structures.
In both create_ratio and add_ratios, we see the line:

ratio *r = (ratio x)malloc(sizeof (ratio));

You have already seen malloc, but this usage is C’s way of doing the equivalent of a Java new
operation. This line:

1. declares a variable r of type ratio «

2. initializes r to the return of the function malloc

3. malloc reserves a chunk of memory of the requested number of bytes and returns a pointer
to the start of the memory segment

4. the sizeof operator determines the number of bytes in the type to which it applies — in this
case ratio, which should be a total of 8 bytes

5. sincemallocdoesnotreturnaratio « (itreturnsavoid =, whichis a generic pointer),
we need the cast to tell the compiler that we will be treating this newly-allocated chunk of
memory asaratio =

Note also the way we refer to the fields of the ratio structure when the variable r contains a
pointer to a ratio:

r—>numerator = numerator;

This is functionally the equivalent of the Java statement:



CSC 381 Programming Unix in C Winter Immersion 2016

r.numerator = numerator;

However, since C allows a variable referring to a structure to be either a pointer or the structure
itself, there are two different notations. If we had a variable r of type rat io rather than ratio
x, we would use the “dot” notation like we use in Java. But here, since we have pointers, we use
the “arrow” notation.

Recall the very important difference between C and Java that dynamically allocated memory in C
is not garbage collected. That means that every chunk of memory we obtain with malloc must be
returned to the system for reuse by a call to the function free. In our case, these free calls are
made in ratio_example.c. For each call to create_ratio or add_ratios, which each
contain a call to malloc, there must be a corresponding call to free.

This brings us to the file ratio_example.c, which is a main function that makes use of the
ratio structure and functions to demonstrate the complexities of C memory management.

Read over the comments in ratio_example. c and see if you can understand how the memory
is being allocated and managed.

? Question 5:
Draw a series of memory diagrams showing the contents of memory (both stack variables
and the memory allocated in the heap) right before the return statement in each call to
add_ratios (so, 2 separate diagrams), and then right before the ret urn statement at the
end of main. (12 points)

Programming Assignment

Write a new driver program (C file with a main function) sum_ratios. c that reads in a series
of lines representing ratios from an input file and prints the sum of those ratios in lowest terms at
the end.

e The program should take a single command-line parameter which is the name of the file that
contains the list of ratios.

e Properly formatted lines in the file should look like this, where n and d are int values:
n/d

e Your program should stop reading input and print the final result when it encounters an
incorrectly formatted line or the end of the file. (Hint: fscanf’s return value is your friend.)

e You should use the ratio.c, ratio.h, gecd.c, and gcd. h files, unmodified, from the
example.

e Provide your own sum_ratios.c and a working Make fi1e that will build your program
on mogul.



CSC 381 Programming Unix in C Winter Immersion 2016

e Be sure to perform appropriate error checking including meaningful error reporting, and free
all memory your program allocates.

e Your program should compile with no warnings using gcc’s ~Wall flag.

The program is worth 20 points.

The executable for the reference solution to this program is available on mogul in /home/cs—
381/labs/structs.

Submission

Please submit all required files as email attachments to ferescoj@strose.edu by Wednesday, Jan-
uary 6, 2016. Be sure to check that you have used the correct file names and that your submission
matches all of the submission guidelines listed on the course home page. In order to email your
files, you will need to transfer them from mogul to the computer from which you wish to send the
email. There are a number of options, including the s ftp command from the Mac command line.

Grading
This lab is graded out of 50 points.

| Grading Breakdown
Lab questions and output captures 30 points
sum_ratios. c correctness 10 points
sum_ratios. c error checking 2 points
sum_ratios.c memory management | 2 points
sum_ratios.c documentation 3 points
sum_ratios.c style 2 points
Makefile for ratios program 1 point
Total \ 50 ‘




