
Computer Science 381
Programming Unix in C
The College of Saint Rose
Winter Immersion 2014

Lab 9: Data Structures
Recommended Due Date: Tuesday, January 14, 2014

This lab is a follow on to the previous two. You will write two more C data structures in the
object-oriented style.

Unix Utilities

Before we get into this lab’s C programming tasks, we take a look at some of the most useful Unix
utilities. The extensive set of simple but useful utilities, and the ability to string them together with
pipes and scripts are the real power of a Unix environment. Experienced Unix users faced with a
task often find that they can quickly put together a script, oreven a single command that performs
the task, avoiding the need to find (or worse yet, write) a single program to perform it. This is
especially true when the task involves processing some

Back in the first lab, you looked into the functionality of a list of Unix commands. We will look
more closely at some of those, plus a few more, this lab and next.

Pipes

Input and output redirection, which you’ve already been doing this semester, is one of the great
sources of the power of the Unix command line. You have seen that you can have a program
that is expecting input from the keyboard (standard I/O functions like getchar and scanf
that read fromstdin) get its input instead from the contents of a file. For example, in the
inputadder program from earlier this semester, you could have a set of numbers to be added in
a filemynumbers.txt and without changing your program to know that the input is going to be
in a file rather than be typed in at its prompts by issuing the command:

./inputadder < mynumbers.txt

You have been using output redirection all semester, at least for the “output capture” questions in
the labs.

ls -laR > ls.out

Now if you wanted to take the output of one program and use it asthe input to another, you could
use a temporary file as a way to store that output from the first program and provide it as input to
the second. For example, if you have one program that generates a list of numbers (for whatever
purpose), and you want to add those numbers up with yourinputadder program:

CSC 381 Programming Unix in C Winter Immersion 2014

./gennumbers > tempfile

./inputadder < tempfile

While this would work, it has some problems. We need to pick a name for a file that doesn’t already
exist. We need space in the filesystem to store the file. We willwant to remember to remove the
file afterward.

Unix provides the ability to attach the output of one programdirectly to the input of another using
a pipe. For the example above, your command line would be:

./gennumbers | ./inputadder

In addition to avoiding the need for the temporary file, this can be done much more efficiently
behind the scenes. The first program can still be running while the second starts its work.

There’s no reason to limit this to just two commands in a pipeline. For example, suppose we have
an input filenamelist.txt that contains an unsorted list of names, one per line. We wantto
consider only those names that contain the word “john” anywhere in the name, and we want to
print out the last three alphabetically from that group. This pipelined command line would do it:

grep -i john namelist.txt | sort | tail -3

Lab Question 1:
Explain what’s happening in each component of the above command pipeline and how they
combine to work as described. (3 points)

For the following lab questions, describe the effect of the given command pipeline.

Lab Question 2:
ls -1 | wc -l (1 point) Note: the parameter tols is the number ‘1’ while the parameter
to wc is the letter ‘l’.

Lab Question 3:
head -10 myfile | tail -1 (1 point) The parameter totail is the number ’1’.
We assume that the filemyfile contains at least 10 lines.

For the following lab questions, give a single Unix command pipeline that would accomplish the
task described.

Lab Question 4:
Print the number of files in the current directory. (1 point)

Lab Question 5:
All of the files in a directory modified on Halloween. (2 points) Hint: start withls -la.

2

CSC 381 Programming Unix in C Winter Immersion 2014

Lab Question 6:
Given a file with a list of several hundred words, one per line,print the word that occurs
between lines 100 and 200 of the file which is last alphabetically. (2 points)

Programming Assignment: A Queue of Ratios

Create a queue structure and corresponding functions to operate on queues in C that holdsratio
values. You may use theratio structure from theratios examples. Again, include an ap-
propriate header file, implementation file and a file containing amain function that tests your
implementation. Also include aMakefile that compiles your queue implementation and your
testing code.

Programming Assignment: A Priority Queue of Ratios

Next, create a priority queue structure and corresponding functions to operate on priority queues
in C that holdsratio values. Your priority queue should remove the smallest ratio when an item
is removed. Again, include an appropriate header file, implementation file and a file containing
a main function that tests your implementation. Also include aMakefile that compiles your
priority queue implementation and your testing code.

These programs and theirMakefiles are worth a combined 40 points as broken down below.

Reference solutions to all programs are available on mogul in/home/cs381/labs/ooc2.

Submission

Please submit all required files as email attachments toterescoj@strose.edu. You are recommended
to do so by Tuesday, January 14, 2014. Be sure to check that you have used the correct file names
and that your submission matches all of the submission guidelines listed on the course home page.

Grading

Grading Breakdown

Lab questions 10 points
ratio queue correctness 12 points

ratio priortity queue correctness12 points
Program error checking 3 points

Program memory management 4 points
Program documentation 5 points

Program style 3 points
Makefiles 1 point

3

