
Computer Science 381
Programming Unix in C
The College of Saint Rose
Winter Immersion 2014

Lab 1: C and Unix Introduction
Recommended Due Date: Thursday, January 2, 2014

In this first lab, you will be introduced to the basics of C and Unix.

You may ask your instructor and classmates for help as you complete this lab, but the work you
submit must ultimately be your own. If you are completely unfamiliar with Unix, don’t hesitate to
ask questions! On the other hand, if you have some experience, don’t hesitate to help a classmate!

Note for Winter Immersion Online Students

If you choose not to work on the Macintosh systems in Science Center 469A, you can safely ignore
the references to and tasks related to the Macintosh-specific items.

Preliminaries

Before you begin work on this lab, you should make sure you can log into the Macs in the lab
(these should accept your regular username and password) and open a command terminal (under
Applications/Utilities) and can log into our remote-access Linux systemmogul.strose.edu
(a separate account that needs to be set up if you have not usedthis system for a previous course).

Also, read over the description of the types of items you willencounter in our labs on the course
home page.

Motivation

GUIs are nice, but they can be slow to navigate and too restrictive for some purposes. You can often
work much more efficiently ny working in a Unix environment and interacting with the system by
typing commands at the Unixshell, or command line. When you log in, you will be presented with
a prompt. This is your direct interface to issue commands to the operating system. When you type
a command here, the shell will execute the command on your behalf, print out any results, then
reissue the prompt.

Of course, the command line is useless if you don’t know what commands it understands. You
will learn about several important commands in this lab and many more throughout the semester.
One of the most important isman – the Unix manual. Every Unix command has a manual page,
includingman. To see the manual page aboutman, type the command:

man man



CSC 381 Programming Unix in C Winter Immersion 2014

The Emacs Editor

Emacs (emacs from the Unix command line) is a powerful text editor, which is very good for
programming in a language like C and for general plain-text editing. You will need to become
familiar with it.

To try it out, you will use it to create yourlab1.txt file that will contain your answers to this
week’s lab questions. For at least this lab, you are to createthis file in your home directory on
mogul.

Log intomogul.strose.edu using ssh from a Terminal window on the Mac. If your username
onmogul.strose.edu is jcool , you would issue the command

ssh mogul.strose.edu -l jcool

at the terminal prompt. Log in with yourmogul.strose.edu password. You should be pre-
sented with a prompt that looks something like:

[jcool@mogul ˜]$

and mogul is now ready to accept your commands. More on those later.

Now open a second Terminal window and log intomogul.strose.edu on that one as well.

In one of the windows, launchemacs on the filelab1.txt :

emacs lab1.txt

Emacs should start up, and present you with a text-based menuacross the top (which we will
purposely ignore), a large area where you can edit the file, and two lines of status information
across the bottom.

Type your name and “Lab 1 Questions” in the Emacs window that is editing the filelab1.txt :

In the other window, launch anotheremacs session where you can type some text and then identify
the function of and experiment with these Emacs commands:

C-x C-s C-x C-c C-x C-f C-x C-w C-g C-a C-e
C-d C-_ C-v M-v C-s C-r M-%
C-k C-y M-gg C-x u

C- before a key means hold downCtrl and hit that key.M- indicates the “Meta” key, which on
most systems isEsc . To issue a Meta command, hit theEsc key, release it, then hit the key(s) for
the command you wish to issue. Use the keystrokes rather thanthe menus. It will save you time in
the long run! Note: for some of these commands, a very small buffer (that is, the contents of the

2



CSC 381 Programming Unix in C Winter Immersion 2014

file you are editing) will not allow you to see what they do. So create a file with several screens
full of text before you go too far.

Lab Question 1:
Complete your Emacs command descriptions inlab1.txt (3 points).

Directory Structure

It is always important, but especially so when working with the Unix command line, to know where
the files in various directories (often called “folders” on Macintosh and Windows systems because
of how they are visually represented in GUIs) you might be using are actually stored, and where
and how those are accessible.

On the Macs in our labs, your home directories are (unfortunately) local to each station. Any files
you save there are only on that computer and are not guaranteed to remain for a later session. If
you want to save files on your college network space, you will need to “mount it”. To do so, choose
“Connect to Server” from the “Go” menu in the Finder (or Command-K) to connect and then make
sure you save your files to the volume that you mount.

On mogul.strose.edu , we find a more standard Unix style environment. Each user hasa
home directorywhere only that user has permission to read and write files. Your home directory is
the initialcurrent directoryor working directorywhen you first log in.

The working directory is where the program will look for filesunless instructed to do otherwise.
You’ll hear Unix users asking a question like “What directoryare you in?” and the answer to this
is your working directory.

The commandpwd will instruct the shell to print your working directory.

Lab Question 2:
What is your home directory onmogul.strose.edu ? (usepwd)

Note: lab questions are worth 1 point each unless otherwise specified.

Lab Question 3:
What is your home directory when you open a Macintosh Terminalwindow?

Lab Question 4:
What is the path to the directory where you mounted your college network volume?

You can also list the contents of your working directory withthe commandls .

Lab Question 5:
What output do you see when you issue thels command onmogul.strose.edu ?

3



CSC 381 Programming Unix in C Winter Immersion 2014

Other important operations to navigate and modify the directory structure are changing your work-
ing directory (cd ), creating a new directory (mkdir ), and removing a directory (rmdir ).

Create a directory in your account for your work for this course (cs381 might be a good name),
and a directory within that directory for this assignment (lab1 might be a good name).

Lab Question 6:
Change your working directory to the one you just created and issue thepwd command.
What does this show as your working directory?

In your shell window and in your home directory (note: you canalways reset your working di-
rectory to be your home directory by issuing the commandcd with no parameters), issue this
command:

uname -a > linux.txt

This will execute the commanduname -a , which prints a variety of information about the system
you are on, and “redirects” the output, which would normallybe printed in your terminal window,
to the filelinux.txt .

Output Capture:
linux.txt for 1 point(s)

Look at the contents of the filelinux.txt with the command:

cat linux.txt

Do the same in a Mac terminal window, saving the output ofuname -a in a file calledmac.txt .

Output Capture:
mac.txt for 1 point(s)

Lab Question 7:
What do you think the information inlinux.txt andmac.txt means?

Unix Commands

Identify the function of and experiment with these Unix commands (a few of which you have
already used):

ls cd cp mv rm mkdir pwd
man chmod cat more grep head tail
ln find rmdir wc diff scp touch

4



CSC 381 Programming Unix in C Winter Immersion 2014

Lab Question 8:
Give a one sentence description of each command. (4 points)

Using appropriate commands from the above list, move thelinux.txt andmac.txt files you
created in your home directory into the directory you created on mogul for your work for this
assignment.

Show that this has worked by issuing the following command from inside of your course directory
(but not inside the directory for this assignment):

ls -laR > ls.out

Then move the filels.out into the directory for this assignment.

Output Capture:
ls.out for 3 point(s)

Using the Unix manual, your favorite search engine, or in discussion with your classmates, deter-
mine the answers to these questions:

Lab Question 9:
How do you change your working directory to be “one level up” from the current working
directory? (Give the command.)

Lab Question 10:
Give two or three different ways to change your working directory to be your home directory.
All likely involve the cd command, but will take different parameters.

The C Programming Language

C is a widely-used, general purpose language, well-suited to low-level systems programming and
scientific computation.

We will initially study it assuming you have Java experience, focusing on the features that make
C significantly different from Java. Fortunately, Java borrowed much of its syntax from C, so it is
not difficult for a Java programmer to read most C programs.

C++ is a superset of C (that is, any valid C program is also a valid C++ program, just one that
doesn’t take advantage of the additional features of C++). C++adds object-oriented feautures. In
this course, we will look only at C, not C++.

A Very Simple C Program

We will begin by seeing how to compile and run a very simple C program (hello.c ) in a Unix
environment.

5



CSC 381 Programming Unix in C Winter Immersion 2014

See Example:
/home/cs381/examples/hello

For you to run this, you will want to copy the example to your own directory. Create a directory
calledhello under your directory for this lab and copy the C file into that directory.

Change to that directory and compile and run it:

gcc hello.c
./a.out

Things to note from this simple example:

• We run a program namedgcc , which is a free C compiler.

• gcc , in its simplest form, can be used to compile a C program in a single file:

gcc hello.c

In this case, we’re askinggcc to compile a C program found in the filehello.c .

Since we didn’t specify what to call the executable program produced, gcc produces a file
a.out . The name isa.out for historical reasons.

• When we want to run a program located in our current directory in a Unix shell, we type its
name.

– For example, when we wanted to rungcc , we typed its name, and the Unix shell found
a program on the system in a file namedgcc .

– How does it know where to find it? The shell searches for programs in a sequence of
directories known as thesearch path. Try: env .

– So if we want to runa.out , we should be able to type its name. But our current
directory, always referred to in a Unix shell by “. ”, is not in the search path. We need
to specify the “. ” as part of the command to run:

./a.out

• Of course, we probably don’t want to compile up a bunch of programs all nameda.out , so
we usually askgcc to put its output in a file named as one of the parameters togcc :

gcc -o hello hello.c

Here, the executable file produced is calledhello .

• And in the program itself, let’s make sure we understand everything:

6



CSC 381 Programming Unix in C Winter Immersion 2014

– At the top of the file, we have a big comment describing what theprogram does, who
wrote it, and when. Your programs should have something similar in each C file.

– We are going to use a C library function calledprintf to print a message to the
screen. Before we can use this function, we need to tell the C compiler about it. For
C library functions, the needed information is provided inheader files, which usually
end in.h . In this case, we need to includestdio.h . Why? Seeman 3 printf .
(More on the Unix manual later.)

– A C program starts its execution by calling the functionmain . Any command-line
parameters are provided tomain through the first two arguments to main, traditionally
declared asargc , the number of command-line parameters (including the nameof
the program itself), andargv , an array of pointers to character strings, each of which
represents one of the command-line parameters. In this case, we don’t use them, but
there they are.

– Our call toprintf results in the string passed as a parameter to be printed to the
screen. The\n results in a new line.

– Our main function returns anint value. A value of 0 returned frommain generally
indicates a successful execution, while a non-zero return indicates an error condition.
So we return a 0.

• Notes for Java programmers:

– Good news: much of the syntax of Java was borrowed from C, so a lot of things will
look familiar.

– There are no classes and methods, justfunctions, which can be called at any time. Any
information a function needs to do its job must be provided byits parameters or exist in
global variables– variable declared outside of every function and which are accessible
from all functions.

Practice Program

Write your own C program namedhelloloop.c , much like the “Hello, World” example, but
which prints some other message and prints it 10 times insideof a for loop. The Cfor loop
is much like Java’sfor loop, except that the loop index variable needs to be declared before the
loop. That is, a Java loop that looks like this:

for (int i=0; i<10; i++) {
...

}

would need to have the declaration ofi outside of the loop:

7



CSC 381 Programming Unix in C Winter Immersion 2014

int i;

// any other code that happens before the loop

for (i=0; i<10; i++) {
...

}

Make sure your program compiles and runs on either the Mac or mogul usinggcc .

This program is worth 10 points.

Note: there are no formal “Programming Assignments” this week.

Submission

Please submit all required files as email attachments toterescoj@strose.edu. You are recommended
to do so by Thursday, January 2, 2014. Be sure to check that you have used the correct file names
and that your submission matches all of the submission guidelines listed on the course home page.

Grading

Grading Breakdown

Lab questions and output captures20 points
Practice program 10 points

8


