
Computer Science 381
Programming Unix in C
The College of Saint Rose
Winter Immersion 2014

Lab 6: Debugging
Recommended Due Date: Thursday, January 9, 2014

In this lab, you will get a bit more practice with pointers in Cand learn how to use the GNU
Debugger,gdb.

Reference solutions to all programs are available on mogul in/home/cs381/labs/debugging.

Debugging in C

In this lab, we will take a quick look at some tools for debugging that you might find helpful the
rest of the way.

Java generally generates an exception when a program crashes and produces a useful stack trace
that, in most cases, directs you to the exact line of code thatcaused the failure.

C is not nearly that helpful. In a Unix environment, C programs that crash typically generate errors
such as “Segmentation fault”, “Bus error”, or “Floating exception”, with no indication of exactly
what the ultimate problem was or which statement caused it. We need some tools and techniques.

Some Buggy Programs

We start by writing a few programs that (intentionally) demonstrate some of the more common
bugs that crop up in C programs.

Write short C programs that demonstrate these common C programming errors (2 points each):

• A program that allocates an array of 10ints on the stack, but which has an initialization
loop that sets values in the first 20 slots of the array (only 10of which actually have memory
allocated for them). Call this programarrayindex.c.

• A program that tries to assign a value to an uninitialized pointer to anint. Call this program
badpointer.c.

• A program that tries to assign a value to a pointer initialized to NULL. Call this program
badpointer2.c.

• A program that leaves off the& for the destination for anint parameter of ascanf function
call. Call this programbadprintf.c.

• A program that prints out values of1
n

for n from 10 down to 0. Compute as 1.0/n to force
floating point division. Call this programdividebyzero.c.



CSC 381 Programming Unix in C Winter Immersion 2014

• A program that computes theint average of a series ofints presented on the input. Stop
reading numbers and report the average as soon as thescanf fails. Do not add error
checking that makes sure at least one number was successfully entered. Call this program
average.c.

Lab Question 1:
List any compiler warnings you see when you compile the aboveprograms. (2 points)

Lab Question 2:
List any run-time errors you see when you execute each of the above programs. For
average.c, input a non-numeric value for the first number to force a division by zero.
(5 points)

Lab Question 3:
For yourarrayindex.c, change the upper bound of your initialization loop to stop at 9,
10, 11, ..., 20, and indicate which result in crashes. If you program crashes, give the error
message. (3 points)

Help from the Compiler

While C is a very forgiving language (it is often said that the language provides you many ways
to shoot yourself in the foot), compilers can sometimes detect likely errors and report them as
warnings. With thegcc compiler, we can enable all possible warnings by specifyingthe-Wall
flag. For example, you can compilearrayindex.c with a command like:

gcc -Wall -o arrayindex arrayindex.c

Lab Question 4:
Recompile each program with the-Wall flag. Do you get any additional compiler warnings?
(2 points)

Most of the warnings reported by-Wall are things that should be addressed. It is strongly recom-
mended to use it for all programs and to fix all reported warnings unless you have a good reason to
believe that “ you meant to do that”.

The Debugging Printout

As is the case in many programming languages, a very common (and usually quite effective)
debugging tool in C is our friendprintf. Having printouts at strategic locations can help figure
out which statement is generating an error.

In your arrayindex.c program, add aprintf inside the intialization loop that prints each
value ofi before the assignment of a value toa[i]. Don’t print a new line (’\n’) until outside
the loop. Change the bound of your loop to 10, then 15, then 20, then 100, then 1000, then 100,000,
and run each several times.

2



CSC 381 Programming Unix in C Winter Immersion 2014

Lab Question 5:
Describe your results from the above experiment. (3 points)

Part of the problem demonstrated here is that C uses “buffered” output. At times, your printout may
not have completed before the program crashes, and your output never shows up. We can avoid the
effect by printing to standard error rather than standard output.printf always prints to standard
output (defined in C asstdout), butfprintf can also print to standard error (stderr):

fprintf(stderr, "%d", i);

It is often helpful to usefprintf to stderr when using debugging printouts to zero in on the
line that is causing an error in your program.

Lab Question 6:
Re-run the previous experiment with printouts going tostderr instead ofstdout. De-
scribe the differences in the output. (3 points)

The GNU Debugger

The best way to find more insidious bugs is to run your program in a symbolic debugger. With
a debugger, your program can be stopped and started, you can step line by line through, you can
print values of variables, and print stack traces when your program has stopped (or crashed).

The GNU debugger,gdb, is one such debugger. To makegdb useful, you will need to compile
your program with the-g flag, which tells it to keep symbolic information that will allow gdb to
take addresses of variables and machine instructions and map them back to your source code.

On mogul, the following would work:

gcc -g -o badpointer2 badpointer2.c
gdb badpointer2

then at the(gdb) prompt, typerun.

When your program encounters an error, you can use commands such aswhere to see where in
the source code your program was executing when it encountered the error, andprint to examine
contents of variables.

Lab Question 7:
Give the output ofwhere andprint for yourbadpointer2.c program when it crashes
when running insidegdb. (4 points)

3



CSC 381 Programming Unix in C Winter Immersion 2014

Lab Question 8:
Find one or two of the many useful tutorials ongdb available through a web search. (I find
this one to be quite nice.) Experiment with breakpoints and the continue, step, and
next commands. You might want to use one of your previous (longer)programs for this.
Copy and paste from your terminal window showing your use of these commands. (6 points)

Submission

Please submit all required files as email attachments toterescoj@strose.edu. You are recommended
to do so by Thursday, January 9, 2014. Be sure to check that you have used the correct file names
and that your submission matches all of the submission guidelines listed on the course home page.

4


