
Computer Science 381
Programming Unix in C
The College of Saint Rose
Fall 2013

Lab 7: Structures in C
Due: 11:59 PM, Thursday, October 24, 2013

In this week’s lab you will learn about themake utility, then about C structures, a simple mecha-
nism that allows heterogeneous data fields to be grouped intoa single entity.

Using themake Utility

Any non-trivial software development involves many iterations of editing, compiling, linking, and
running your programs. The code will be spread across multiple files. The most common mecha-
nism for managing this process when programming in C in a Unixenvironment is themake utility.
The actions ofmake are specified by rules in aMakefile.

Copy the following example to your account:

See Example:
/home/cs381/examples/make-example

You should find a small C program that demonstrates the use of multiple source files and a
Makefile. Compile the program by issuing themake command. Capture the output of the
command inmake.out:

make > make.out

Output Capture:
make.out for 2 point(s)

Now, look at the contents ofmake.out, then at the rules and the description in theMakefile.

Lab Question 1:
Briefly describe howmake uses the rules in theMakefile to produce the executablemain.
Be sure to include the series of targets, their dependencies,and the commands used to satisfy
those dependencies for each target. (5 points)

From this point forward, you should write aMakefile for each of your programs. You are
strongly encouraged to do this when you first start each program rather than at the end - it is
intended to be a tool to speed your development process, so use it that way!

Programs in Multiple Files



CSC 381 Programming Unix in C Fall 2013

Themake example above also demonstrated a very simple case of C code being separated into
multiple.c (implementation) and/or.h (header) files.

We next consider an unnecessarily complicated C program that computes the greatest common
denominator of two integer values that further illustratesthis idea.

See Example:
/home/cs381/examples/gcd

There are lots of things to notice here:

• We have four files:

– gcd.c: the implementation of thegcd function

– gcd.h: a header file with a prototype for thegcd function

– gcdmain.c: a main program that determines the input numbers, computesthe GCD,
and prints the answer, and

– Makefile: a “make file” that gives a set of rules for compiling these files into the
executable programgcdmain.

When executing, functions from bothgcdmain.c (main) andgcd.c (gcd) will be used.
Both of these are included in our executable filegcdmain.

• Start withgcd.c:

– This is a very simple recursive function to compute the greatest common denominator
using the Euclidean Algorithm.

– There is nomain function here, so if we try to compile this by itself as we did with
our single-file C programs, we will get an error.

Lab Question 2:
What happens when you try this? Give the command you used and the error
message that is produced. (2 points)

– Instead, we havegcc use “compile only” mode to generate anobject filegcd.o from
gcd.c:

gcc -c gcd.c

gcd.o is a compiled version ofgcd.c, but it cannot be executed.

C (and many other languages) require a two steps for source code to be converted into
an executable. The first step compiles source code into object code, the second takes
a collection of object code files andlinks together the references in those files into an
executable file. (There’s much more to discuss here, but thisshould suffice for now.)

• Next up,gcd.h:

2



CSC 381 Programming Unix in C Fall 2013

– Much likestdio.h tells the compiler what it needs to know aboutprintf (among
other things), we havegcd.h to tell other C functions what they need to know about
the functiongcd. Namely, that it’s a function that takes twoints as parameters and
returns anint.

– Any C file that contains a function that callsgcd should#include "gcd.h".

• The driver program,gcdmain.c:

– We include several header files to tell the compiler what it needs to know about C
library functions (and ourgcd function) that are called by functions defined here.

– This is where our one and onlymain function is defined.

– This file includes amain function, so we might think we could compile it to an ex-
ecutable as we did with the single-file C programs we’ve used so far. If we try, we’ll
find that it doesn’t know how to find thegcd function.

Lab Question 3:
Try this. Give the command you used and the error message you see. (2 points)

Again, we’ll have to compile but not link:

gcc -c gcdmain.c

This produces the object filegcdmain.o. We need tolink together our two object
files, which, together, have the function definitions we need:

gcc -o gcdmain gcdmain.o gcd.o

This gives usgcdmain, which we can run.

• The Makefile contains rules to generate a sequence of calls togcc that will correctly
compile and link thegcdmain executable.

Lab Question 4:
Draw a memory diagram for this program for the case where the numbers entered are 9 and
24. Your diagram should show the state of memory (including all copies of the parameters
to eachgcd recursive call that exist on the call stack) at the point where the “return b”
statement is about to be executed during the base case of the recursion. (7 points)

C structs

In addition to the readings from Chapter 6 of K&R, the following(somewhat silly) example should
help you understand structures in C.

See Example:
/home/cs381/examples/ratios

3



CSC 381 Programming Unix in C Fall 2013

Again, we have a number of C source code (.c) and header (.h) files. We will consider each in
turn.

The filesgcd.h andgcd.c are the same as the ones you saw earlier in this lab.

The filesratio.h andratio.c define a structure and a number of functions that have to do
with storing a ratio of two integer values.

In ratio.h, we have the definition of the structure that will hold our ratios:

typedef struct ratio {
int numerator;
int denominator;

} ratio;

There are two important things happening here. First, a structure called astruct ratio is
defined. It consists of twoint values:numerator anddenominator. In many ways, these
are like the instance variables of a Java class, but there areno access protections (i.e., they are not
“private” or “protected”, but the equivalent of “public”).Second, we are giving another (shorter)
name to ourstruct ratio: simplyratio. This is being accomplished by thetypedef. In
general, atypedef can define a new name for any type:

typedef x y;

would define a new type namedy which is just another name for an already-existing type named
x.

In our case, thetypedef just means we can refer to variables and parameters of typestruct
ratio as simplyratio.

The rest of the contents ofratio.h defines function prototypes for the functions that will be
defined inratio.c that can be called from elsewhere.

As a whole, the information inratio.h tells a C source file that would like to work with these
ratio structures everything it needs to know to compile.

In ratio.c, the four functions that operate onratios are defined:create ratio con-
structs a newratio given a numerator and a denominator,add ratios takes two existing
ratios, adds them and constructs and returns a newratio that represents their sum in low-
est terms,reduce ratio takes an existingratio and reduces it to lowest terms, and finally,
print ratio takes an existingratio and prints it in a reasonably nice format.

There are a number of things to consider in these functions. The first two functions return a value
of typeratio *. This indicates apointer to aratio structure. The last three functions take
one or two parameters of this same type,ratio *.

Perhaps the most important thing to note here is how we allocate the memory for these structures.
In bothcreate ratio andadd ratios, we see the line:

4



CSC 381 Programming Unix in C Fall 2013

ratio *r = (ratio *)malloc(sizeof(ratio));

You have already seenmalloc, but this usage is C’s way of doing the equivalent of a Javanew
operation. This line:

1. declares a variabler of typeratio *

2. initializesr to the return of the functionmalloc

3. malloc reserves a chunk of memory of the requested number of bytes and returns a pointer
to the start of the memory segment

4. thesizeof operator determines the number of bytes in the type to which it applies – in this
caseratio, which should be a total of 8 bytes

5. sincemalloc does not return aratio * (it returns avoid *, which is a generic pointer),
we need the cast to tell the compiler that we will be treating this newly-allocated chunk of
memory as aratio *

Note also the way we refer to the fields of theratio structure when the variabler contains a
pointer to aratio:

r->numerator = numerator;

This is functionally the equivalent of the Java statement:

r.numerator = numerator;

However, since C allows a variable referring to a structure to be either a pointer or the structure
itself, there are two different notations. If we had a variable r of typeratio rather thanratio
*, we would use the “dot” notation like we use in Java. But here, since we have pointers, we use
the “arrow” notation.

Recall the very important difference between C and Java that dynamically allocated memory in C
is not garbage collected. That means that every chunk of memory we obtain withmallocmust be
returned to the system for reuse by a call to the functionfree. In our case, thesefree calls are
made inratio example.c. For each call tocreate ratio or add ratios, which each
contain a call tomalloc, there must be a corresponding call tofree.

This brings us to the fileratio example.c, which is amain function that makes use of the
ratio structure and functions to demonstrate the complexities ofC memory management.

Read over the comments inratio example.c and see if you can understand how the memory
is being allocated and managed.

5



CSC 381 Programming Unix in C Fall 2013

Lab Question 5:
Draw a series of memory diagrams showing the contents of memory (both stack variables
and the memory allocated in the heap) right before thereturn statement in each call to
add ratios (so, 2 separate diagrams), and then right before thereturn statement at the
end ofmain. (12 points)

Programming Assignment

Write a new driver program (C file with amain function)sum ratios.c that reads in a series
of lines representing ratios from an input file and prints thesum of those ratios in lowest terms at
the end.

• The program should take a single command-line parameter which is the name of the file that
contains the list of ratios.

• Properly formatted lines in the file should look like this, wheren andd areint values:

n/d

• Your program should stop reading input and print the final result when it encounters an
incorrectly formatted line or the end of the file. (Hint:fscanf’s return value is your friend.)

• You should use theratio.c, ratio.h, gcd.c, andgcd.h files, unmodified, from the
example.

• Provide your ownsum ratios.c and a workingMakefile that will build your program
on mogul.

• Be sure to perform appropriate error checking including meaningful error reporting, and free
all memory your program allocates.

• Your program should compile with no warnings usinggcc’s -Wall flag.

The program is worth 20 points.

The executable for the reference solution to this program isavailable on mogul in/home/cs-
381/labs/structs.

Submission

Please submit all required files as email attachments toterescoj@strose.eduby 11:59 PM, Thurs-
day, October 24, 2013. Be sure to check that you have used the correct file names and that your
submission matches all of the submission guidelines listedon the course home page.

Grading

6



CSC 381 Programming Unix in C Fall 2013

Grading Breakdown

Lab questions and output captures 30 points
sum ratios.c correctness 10 points

sum ratios.c error checking 2 points
sum ratios.c memory management 2 points

sum ratios.c documentation 3 points
sum ratios.c style 2 points

Makefile for ratios program 1 point

7


