
Computer Science 381
Programming Unix in C
The College of Saint Rose
Fall 2013

Lab 3: Input/Output in C
Due: 11:59 PM, Thursday, September 19, 2013

In this week’s lab, you will work through some examples focused on how C handles input and
output, including to and from files.

Before you start, create a directory on a Unix or Mac system to contain your work for this lab.

You may do your work on any C-capable Unix-like system (such asa lab Mac or mogul).

Readings from K&R

Skim through Chapters 2 and 3 of K&R. Most of what is there is identical to or at least very similar
to what you likely know well from other programming languages you know. Much of what we will
look at this week is in Chapter 7, though that chapter assumes you have seen some of the material
in Chapters 4-6. Even so, it is useful to be able to use higher-level input and output right away, so
we will consider much of the content of that chapter this weekas well.

Command-line Parameters

You have likely seen Java applications that take command-line parameters (theString args[]
parameter to themain method of a class). A C program that wishes to make use of command-
line parameters must declare two parameters to themain function, traditionally namedargc and
argv.

The parameterargc to themain function is a count of how many command-line strings are
included inargv, which is an array of strings.

See Example:
/home/cs381/examples/printargs

Note:argv[0] is not the first parameter, it is the program name itself, and this array entry for the
program name is included in the value ofargc.

Even when we enter numbers for command-line parameters, theoperating system will provide
them to your program as strings. So we need to be able to convert strings to a numeric equivalent.

See Example:
/home/cs381/examples/repeat

This is done with the overly complicatedstrtol function, which we use, then check error con-
ditions. There’s a lot here we have not yet seen.



CSC 381 Programming Unix in C Fall 2013

• The man page forstrtol tells us we need to include two additional header files,stdlib.h
andlimits.h.

• It also tells us about the parameters tostrtol, which are the string which we would like to
convert to a number, a pointer into the string at the point beyond which we matched a number
(which we don’t care about, so we pass inNULL), and the base to use for the conversion. We
also see that the number is the return value.

• Error checking forstrtol is messy – we need to check the variableerrno, defined in
errno.h, to see if an error condition was encountered. If so,errno will be a non-zero
value and we print an error message and exit.

• We usefprintf instead ofprintf when printing the error message. This is because we
want to give this output special significance. Rather than sending it to thestandard output,
which is whatprintf would do, we send it tostandard error, by usingfprintf and
specifyingstderr as the first parameter. Java supports the same idea: useSystem.err
instead ofSystem.out.

• Other than that, it works just likeprintf. We give it a format string. In this case, it includes
one specifier, a%s, which means to expect an additional parameter which is a character string
(well, really a pointer to anull-terminated array ofchar). Here, the string isargv[0],
the first command-line parameter, which is always the name ofthe program. This labels the
error message with the program name.

• Once we have detected the error, we don’t want to continue, sowe call theexit function
with an error code of 1 to terminate execution. We could also use the callreturn 1;.

• Note that the error check here has two%s’s, so we have two additional parameters to
fprintf, both pointers to strings.

Practice Program:
Write a C program that takes an arbitrary number of command-line parameters, each of which
should represent an integer value. Print out the sum of the values provided. Call your C
programargadder.c (5 points)

Formatted Keyboard Input

We have seen how to use thegetchar function to get input from the keyboard or redirected from
a file, one character at a time. But often, we’d like to read input as words or numbers.

C’s standard mechanism for this is thescanf function.

See Example:
/home/cs381/examples/scanf-example

• scanf is a very strange thing. It will make a bit more sense once you have more experience
with theprintf function, but for now we can summarize what we see there as “read in an

2



CSC 381 Programming Unix in C Fall 2013

integer value (represented by the%d in theformat string), and put it into the place pointed at
by the address ofx, then return the number of values that matched the input withthe correct
format.” Similarly for thedouble value using a%lf in the format string.

• Thescanf call forces us to think a bit aboutpointers, which are the key to understanding
so much of how C works.scanf’s parameters after the format string are always a list of
pointers to a place in memory where there is room to put the values being read in. In this
case, we want theint value to end up in the local variablex, so we have to take the address
of the variable with the& operator. Don’t worry, it will make better sense when you seemore
examples.

• Thescanf to read in a string is a special case and does not require the& operator. This is
because the name of a C string already is a pointer to the first element in the array. Again,
much more on this when we study C pointers in more detail.

• Next, we check to make sure that the input toscanf did, in fact, represent anint value. If
not, we print an error message and exit. Otherwise, we continue.

Practice Program:
Write a programinputadder.c that takes its input from the keyboard rather than from
the command line. Your program should read in integer valuesone by one, accumulating a
sum as you go, until you encounter an invalid (non-integer) or the end of the input (someone
typesCtrl-d). At that point, print out the sum and exit. (5 points)

File I/O

Read Section 7.5 of K&R to learn about reading from and writingto files in C.

Practice Program:
Write a programeverynth.c that takes 3 command-line parameters: the names of two
files and a number we’ll calln. The program should take read a series of integers from the
first file, and write everynth number to the second file. (10 points)

Note: for this program, you can decide when to stop processing input numbers when anfscanf
call returns a value other than 1, indicating that it could not find another number.

Programming Assignment

Note: the programming assignment portion will be due as part of the next lab submission,
but you are strongly encouraged to get as much of it done this week as possible.

There is collection of graph data files that represent various highway systems athttp://courses.
teresco.org/chm/graphs.html. Each of the “.gra” files is in the format described under
“Graph Data” athttp://courses.teresco.org/chm/.

Write a programextremes.c that reads the “waypoints” portion of a graph file whose file name
is specified as a command-line parameter and find the easternmost, westernmost, northernmost,

3



CSC 381 Programming Unix in C Fall 2013

and southernmost waypoints in the file. For each, print out the waypoint label and its latitude and
longitude.

Notes:

• You can safely ignore the “road segments” portion of the input file for this assignment.

• You can safely assume that no waypoint label is longer than 256 characters.

• By including the\n in your fscanf format string, you can automatically move the input
to the next line.

• You can copy one C string to another using thestrcpy function, defined instring.h. If
you have strings declared as

char str1[256];
char str2[256];

the following would copy the contents ofstr1 to str2:

strcpy(str2, str1);

• Valid values for latitudes range from -90 (southernmost) to90 (northernmost) and for longi-
tudes range from -180 (westernmost) to 180 (easternmost).

• If you were doing this in an object-oriented language like Java or C++, you might create
an object to represent each waypoint and provide methods to compare them, print them,
etc.. But here, you can just use three variables, a string (array ofchar) and two doubles to
represent the current waypoint you are considering, and extra sets of strings and two doubles
to keep track of each “most extreme” in some direction waypoint you’ve encountered so far.

This program is worth 30 points, broken down as shown at the end of this document.

Executables for reference solutions to all programs are available on mogul in/home/cs381/labs/io.

Submission

Please submit all required files as email attachments toterescoj@strose.edu by 11:59 PM, Thurs-
day, September 19, 2013. Be sure to check that you have used thecorrect file names and that your
submission matches all of the submission guidelines listedon the course home page.

Grading

4



CSC 381 Programming Unix in C Fall 2013

Grading Breakdown

Practice programargadder.c correctness 5 points
Practice programinputadder.c correctness 5 points

Practice programeverynth.c correctness 10 points

extremes.c correctness 20 points
extremes.c design 3 point

extremes.c documentation 3 points
extremes.c style 3 point

extremes.c efficiency 1 point

5


