
Computer Science 340
Programming Languages
Siena College
Fall 2023

Problem Set 2: Syntax
Due: 11:59 PM, Tuesday, September 26, 2023

In this fairly short problem set, you will be completing some problems related to syntax, grammars,
and parse trees.

You may work alone or with a partner on these problems. In order to earn full credit, you must
show all of your work for these problems.

If working with a partner, this must be confirmed by an email to the instructor by 11:20 AM,
Thursday, September 21, 2023.

Reverse Polish Notation
Reverse Polish notation (RPN) is a common name for postfix mathematical expressions. Such
notation lends itself to a stack-based evaluation and is used by the PostScript printer language and
some old calculators. It has the advantage that it can specify any expression that can be specified
in the usual (infix) notation without the need for parentheses to enforce order of operations.

If we are given an expression in RPN we would evaluate it as follows.

• Start with an empty stack.

• Evaluate the expression from left to right. Each step of the way:

– if a number is encountered, push it onto the stack

– if an operator is encountered, pop 2 numbers from the stack, apply the operator to those
numbers, push the result onto the stack

• If the expression is valid, there should be a single number left on the stack.

So for the expression

9 7 12 - *

we start with the empty stack. We then push 9, push 7, push 12, so our stack consists of [9 7
12]. We encounter the - operator, pop the 12 and the 7 from the stack, calculate 7 - 12 =
-5 and push the result, giving a stack of [9 -5]. We then encounter the * operator, pop the
-5 and 9 from the stack, calculate 9 * -5 = -45 and push the result, giving a stack of [-45
]. Now there are no more tokens on the input, so the value at the top of the stack contains our
result, -45.

CSIS 340 Programming Languages Fall 2023

Question 1: Evaluate the following RPN expressions or state that it is an invalid RPN expression
and why. Assume integer division rules apply where appropriate. (1 point each)

5 8 19 + *
2 3 + 5 7 * /
7 * 12 + 9 / 3
23
2 3 + 5 7 * / 3 4 + * 1 -
9 9 * 8 7 * * 5 5 * * 4 -

Question 2: Convert the following infix expressions into their RPN equivalents. (1 point each)

5 - 3 * 2 + 7
10 * 3 * 9 / 4
(5 + 8) / (9 -3)
5 + 8 / 9 - 3

Question 3: Use BNF to write a grammar for reverse Polish notation that includes the +, -, *, and
/ operators. (16 points)

Question 4: Using your grammar from the previous question, draw a parse tree for the RPN
expression (8 points)

3 4 + 9 3 - 4 * *

A Grammar for BASIC
Considered this grammar for a subset of the BASIC language.

<program> => <lines>
<lines> => <line> | <line> <lines>
<line> => <line-number> <stmt> \n

<line-number> => integer-literal
<stmt> => REM string-literal

| PRINT <print-expr>
| INPUT <variable>
| LET <assignment>
| END

<variable> => <integer-var> | <string-var>
<integer-var> => integer-variable-name
<string-var> => integer-variable-name$
<print-expr> => "string-literal" | <variable>
<assignment> => <integer-var> = integer-literal

| <string-var> = "string-literal"

Question 5: (10 points) Construct a leftmost derivation and corresponding parse tree for the pro-

2

CSIS 340 Programming Languages Fall 2023

gram:

10 REM THIS IS FUN!
20 LET X = 8
30 PRINT X

Three types of BASIC statements that are not included are the IF/THEN construct, the standard
GOTO statement, and the IF/GOTO construct

An IF/THEN looks like this:

30 IF X>5 THEN LET X = 5

A GOTO statement looks like this:

70 GOTO 10

An IF/GOTO statement looks like this:

100 IF Y<>Z GOTO 150

Question 6: Augment the BNF grammar above to include the BASIC IF/THEN construct, the
GOTO statement, and the IF/GOTO construct. For simplicity, assume that the only conditions
permitted for the boolean condition on the IF/THEN and IF/GOTO are numeric comparisons of
integer variables and integer literals and that only the standard comparison operators are supported
(= for equality, <, >, <=, >=, and <> for inequality). (16 points)

Submission
Submit a hard copy of your responses. Please keep a copy/photo of your submission for yourself if
your responses are handwritten. If working with a partner, only one submission is needed for the
group.

Grading
This assignment will be graded out of 60 points.

Feature Value Score
Q1: RPN expression evaluations 6
Q2: Convert infix to RPN 4
Q3: BNF for RPN 16
Q4: Parse tree for RPN 8
Q5: Leftmost derivation/parse tree for BASIC program 10
Q6: Augmented BASIC BNF grammar 16
Total 60

3

