
Computer Science 340
Programming Languages
Siena College
Fall 2023

Problem Set 4: Parser for Little C
Due: 11:59 PM, Monday, October 23, 2023

For this assignment, you will be implementing a parser for a further variant of the lC (little C)
language you used in the previous assignment. You will use the tokenizer you have developed as
the first stage in this larger program that will perform a full syntax analysis of (i.e., parse) a lC
program.

A parser is a complex program. As such, you are strongly encouraged to form groups of 2 or 3
again for this assignment. You need not maintain the same groups you had for the tokenizer unless
you wish to do so.

You can find and run the executable for my solution code for this program on noreaster.ter-
esco.org in /home/cs340/probsets/parser/ .

Commit and push often, and use meaningful commit messages. It’s only a small part of the grade,
but it’s The Right Thing To Do.

Getting Set Up
In Canvas, you will find a link to follow to set up your GitHub repository, which will be named
parser-probset-yourgitname, for this problem set. Only one member of the group should
follow the link to set up the repository on GitHub, then others should request a link to be granted
write access.

All GitHub repositories must be created with all group members having write access and all group
member names specified in the README.md file by 11:20 AM, Thursday, Ocrober 12, 2023. This
applies to those who choose to work alone as well!

Parser Requirements
You will be using the grammar specified on the Tokenizer Problem Set description.

Your tasks are

1. Determine from the BNF grammar which rules need to “make choices” and how they will
make those choices. That is, those rules that have two or more options on their right hand
side, how will your parser know which rule to apply. For this, you will need to determine
what the “first” token set is for each choice.

For example, the <iterative-statement> rule can be either a <while-statement>
or a <for-statement> We can readily determine which of these to apply. If the next
token is the while keyword, we have encountered a while statement, a for keyword
indicates a for statement, and any other token means there is an error.



CSIS 340 Programming Languages Fall 2023

2. Write a C program parser.c that takes as its input a single command-line parameter,
the name of a file that contains a lC program. It should follow the model of the improved
sebesta-recdescent example in how it initializes the lexer, and calls the function for
the start nonterminal (in this case, program).

To get started, combine your lC tokenizer code with the basic framework found in the sebesta-redescent
example. You will need to replace the functions expr(), term(), and factor() with many
other functions: one for each of the nonterminals in the lC grammar. You should name the func-
tions the same as the nonterminals, but replace dashes with underscores. Some of these functions
should be quite short, others have more work to do. In most cases, it will be clear what you need
to do from looking at the BNF rule and the “first” tokens that will cause a particular rule to be
applied. The trickiest rule might be the <statement-list>, which consists of a statement,
possibly followed by another <statement-list>. In this case, you need to look at the BNF
rule that produces a <statement-list> to determine when we need to call it again, and when
the <statement-list> should end.

The output of your program should be primarily through the provided match, entryMsg and
exitMsg functions. Any time a function in your parser has determined that part of a rule
“matches” a token on the input, call match with the current function name (i.e., the name of
the BNF rule currently being applied), and an appropriately indented message about the token
matched will be printed. This, combined with calls to entryMsg and exitMsg will result in the
“parse tree”-like format of the output.

When you encounter a parse error, call the error function with an appropriate message. The
messages in my version are short and probably not that helpful in many circumstances. If you get
the parser working and still have time, see if you can improve on these messages.

A slow and steady approach will be essential here. You will definitely need to ask questions. You
will definitely need to discuss your approach with your partner(s). No one piece is huge, though,
so tackle it one step at a time and keep making progress.

General Requirements
Your code should be commented appropriately throughout. Please also include a longer comment
at the top of your program describing your implementation. And, of course, it should include your
name(s).

Your program should compile without warnings using gcc on noreaster when the -Wall flag
is included. This flag turns on extra warnings that will help you avoid some of the pitfalls of C
programming. If you encounter any warnings that you don’t know how to fix, ask!

Include a Makefile that compiles the program with the -Wall flag. This Makefile should
produce an executable program called parser. My Makefile is on noreaster.teresco-
.org in /home/cs340/probsets/parser/ . Please feel free to use or modify as you see
fit.

Submission

2



CSIS 340 Programming Languages Fall 2023

Commit and push!

Grading
This assignment will be graded out of 150 points.

Feature Value Score
Basic recursive descent parser organization 25
Parser completeness and correctness 85
Appropriate output format 10
Git commit frequency and message quality 10
Program documentation 15
Program efficiency, style, and elegance 5
Total 150

3


