Computer Science 340

Programming Languages
SIENAcollege Siena College

Computer Science Fa“ 2023

Topic Notes: Lexical Analysis

Lexical Analysis
We next consider lexical analysis — the process of identifying the small-scale language constructs.

Here, we identify the lexemes — names, operators, numeric literals, punctuation, line numbers
(BASIO), etc.

In many ways, lexical analysis is similar to syntax analysis, but it is generally a easier problem.

Lexical analysis is usually performed separately from syntax analysis. Why?

» Simplicity: simpler approaches are suitable for lexical analysis
* Efficiency: focuses optimization efforts on lexical analysis and syntax analysis separately
* Portability: a lexical analyzer might not always be portable (due to file I/O), whereas syntax

analyzer may remain portable

The lexical analyzer is typically a pattern matcher.

Identifies and isolates lexemes

Is a “front-end” for the parser, which can then deal strictly with tokenized input

* Lexemes are logical substrings of the source program that belong together

Lexical analyzer assigns codes called tokens to the lexemes
— e.g., For a variable name sum, sum is a lexeme; and IDENT is the token

Before we look at specifics of how a lexical analyzer works, let’s think about what some of these
lexemes look like.

First, consider integer constants in C/C++. These include:
* an optional unary minus sign
* digits

* optional e notation

CSIS 340 Programming Languages Fall 2023

* different prefixes for octal and hexadecimal

https://github.com/SienaCSISProglLang/intliterals

To create a formal definition of an integer with the restriction that it must be in base 10 and that it
does not use e notation:

cJ--aJ20UsUsUsJsJ7UsUo-oJ1J2U3U2Us s 789+

This means it’s either nothing or a unary —, followed by one digit in the 1-9 range, then 0 or more
copies of digits 0-9. The “0 or more copies of” is indicated by the * at the end.

Alternately, we could use a Unix-like regular expression:
(=2[1-9][0-9]«10)

Again, an optional —, one digit 1-9, zero or more digits 0-9, OR the whole thing can be a single 0.

We can also see this as a deterministic finite automaton (DFA) or state diagram.

0 [1-9]

[1-9]

This can also be described by a grammar.

<int-literal> => —-<unsigned-int>
| <unsigned-int>
| O
<unsigned-int> => [1-9]
| [1-9]<one-or-more-digits>
<one-or-more-digits> => [0-9]
| [0-9]<one-or-more-digits>

2

CSIS 340 Programming Languages Fall 2023

A language is regular if

* It can be represented by a regular expression.
* It can be represented by a deterministic finite automaton (DFA).

* It can be represented by a regular grammar.

These are all equivalent statements.

We have seen grammars. A regular grammar is one that has a very restricted form for its produc-
tions:

* a production’s right hand side (RHS) may be a single terminal

 a production’s RHS may be a single terminal followed by a single nonterminal

A grammar is regular if and only if it produces a regular language.

The grammar given above for integer literals is not a valid regular grammar because of the second
rule (its RHS is a single nonterminal). We can rewrite it a bit to eliminate this.

<int-literal> => —-<unsigned-int>

| [1-9]

| [1-9]<one-or-more-digits>

|
<unsigned-int> => [1-9]

| [1-9]<one-or-more-digits>
<one-or-more-digits> => [0-9]

| [0-9]<one-or-more—-digits>

[
[
0

We’ve basically put a copy of the productions for <unsigned-int> into the productions for
<int-literal> to come up with an equivalent grammar which now does satisfy the require-
ments for a regular grammar.

A Lexical Analyzer

Our textbook has a demonstration of a simple lexical analysis program for arithmetic expressions
in Section 4.2.

The best way to understand lexical analysis is to understand the relation between the state diagram
below (from Sebesta) and a grammar, with a lexical analysis program, and to understand how the
program works.

CSIS 340

Programming Languages

Letter/Digit

—

st .
/acldchar; getChar \

Letter R e
@ - & return lookup (lexema)
addChar; getChar S

\

\ Digit 77 =\
T ————————(| int) —— > return Int_Lit
addchar; getcChar N\ 4 2

' ™

‘ \x Digit / |

addchar; getChar

\ " ~\, telookup (nextchar)
S 1

return t
S —

Figure 4.1 from Sebesta 2012.

An improved version of the C program from the text:

https://github.com/SienaCSISProglLang/sebesta—-lex

See the extended comments in the code for more details.

Fall 2023

