Computer Science 335

Parallel Processing and HPC
SIENAcollege Siena College

Computer Science Fa“ 2024

Topic Notes: Scientific Computing

Distributed Data Structures

Recall that in an SPMD parallel environment, cooperating processes do not share memory, and
often coordinate with each other through message passing. One of the motivations for program-
ming in this model, such as with MPI, is that not only can these programs take advantage of more
processing cores as compute nodes are added, but also the additional memory resources. We will
assume the MPI model for this, where even if running on cores of the same physical node that
share memory, each has access only to its own virtual address space and any sharing of informa-
tion among processes required message passing.

A distributed data structure can be used in these situations. With a distributed data structure, the
global data structure does not exist in its entirety in any one process’ memory space. Each allocates
and manages some subset of the structure, possibly including some overlap.

So far, we have looked at distributed data structures that use only arrays. Arrays usually are the
easiest to distribute; we simply assign a range of subscripts to each process. As a programmer of a
distributed array data structure, we would need to take care to understand the difference between a
local and a global indexing. In the case when there is some duplication, we likely would also need
to consider which process is considered the owner of any duplicated data.

In your Jacobi solver, solution points were distributed evenly through the domain:

When we distributed this across a team of MPI processes, we assigned a subset of the rows to be
assigned to each process, along with a replicated boundary row on each side.

In our programs, we stored only local indices of the distributed rows. For the purposes of the
computation, it did not matter what the global index was. The only place it mattered was in the
functionality to output the solution data with coordinates.

CSIS 335 Parallel Processing and High Performance Computing Fall 2024

Adaptivity and Linked Structures

Solution points here are distributed evenly through the domain. That is, each represents the same
size subset of the computational domain. The density of these points is what determines how
accurately the structure can represent temperatures throughout the domain (since in our simple
simulation, we assume temperature is a constant throughout the portion of the domain it models.

If you wanted a more accurate solution, you could add more solution points. But since your pro-
gram used a uniform distribution of the points, better accuracy requires adding points everywhere.

While what we described above will work to improve our solution accuracy, it increases the total
amount of work very quickly.

In some cases, we really only need more points in just parts of the domain. In a heat distribution
problem, if there is a heat source in the northwest corner, we may only need more accuracy near
that heat source. Fewer points may provide a sufficiently accurate solution further from the source.

This is significantly more efficient in terms of the amount of computation we need to do to obtain
a solution of acceptable accuracy.

If we know ahead of time where the extra work is needed, we could assign extra points there
at the start of the computation. However, we often do not know this information. After all, we
probably wouldn’t be solving problems for which we already have a solution handy, so an adaptive
approach is taken. Periodically, the accuracy of the solution can be checked, and extra points added

2

CSIS 335 Parallel Processing and High Performance Computing Fall 2024

as needed. In the context of the Jacobi solver, we may have a threshold for the greatest allowable
difference in temperature between adjacent points. If the difference exceeds the threshold, points
are added in that vicinity and the solution is recomputed.

Adaptivity with arrays is difficult, as the completely regular structure is lost. In many cases, a mesh
structure, often implemented as a linked data structure, is used instead of arrays.

Meshes come in a variety of types. Meshes consisting of quadrilaterals (hexahedra in three di-
mensions) are sometimes called structured meshes. Meshes constructed from triangles (tetrahedra
in three dimensions) are called unstructured meshes. There are big differences in terms of what
happens mathematically when you use them to solve a problem and how hard they are to generate,
but for the purpose here, studying how we handle the parallelization of these irregular structures,
the issues are similar.

Some terminology: a typical mesh consists of three-dimensional regions or volumes, and their
bounding faces, edges, and vertices. A data structure implementing the mesh will often allow
queries such as “what faces bound this region” and “what edges are incident on this vertex” to be
made efficiently.

The term “element” often is used to refer to the highest-dimension entity, and in many cases is the
entity with which the solution is stored.

In fact, our Jacobi example is really just a computation on a uniform quadrilateral structured mesh.
Here, squares serve as the mesh elements and these contain the solution values.

A (hypothetical) adaptive refinement of such a mesh might look like:

CSIS 335 Parallel Processing and High Performance Computing Fall 2024

Here is a simple unstructured mesh:

The use of adaptivity (and some other considerations) necessitate linked data structures for the
mesh. Here is the triangular mesh after a hypothetical refinement operation:

P

Such mesh structures may be stored in memory as arrays of entities or with a full topological hier-
archy. We will soon consider an implementation of an adaptive structured mesh using a quadtree
data structure.

We can see some examples of mesh structures implemented with a full, linked entity hierarchy in
the Parallel Unstructure Mesh Infrastructure, from RPI’s Scientific Computation Research Center.
(See links on lecture page).

CSIS 335 Parallel Processing and High Performance Computing Fall 2024

A variety of algorithms can be used to determine just how to distribute mesh elements among a set
of cooperating processes and several of these mesh partitioning algorithms will be topics of study
for us very soon.

Computation on Quadtrees

We will consider a relatively simple example of an adaptive computation. We return to our Jacobi
Iteration heat solver.

We could approach this problem using an unstructured mesh as described above, but that can get
complicated very quickly, even more so than the approach we will take. Instead, we will use a
C program to solve Laplace’s equation on a square domain using Jacobi iteration that operates
on an adaptive quadtree structure. We will think about how to parallelize this adaptive Jacobi
solver, using the SPMD model with MPI for message passing and finally, how to implement a
redistribution procedure to rebalance the load after imbalance is introduced by adaptivity.

Quadtrees

A quadtree is a spatial tree data structure. Each node in the tree is called a quadrant. The leaves of
the quadtree will be referred to as leaf quadrants or terminal quadrants. These terminal quadrants
will serve as the elements on which we will perform computation.

The tree’s root represents the entire domain, which, in our case, is a square.

©)

The four children of the root each represent one quarter of the space taken by the root.

AN

These children can then be divided in four, continuing down as many levels as desired. Different
parts of the domain may be refined to different levels.

CSIS 335 Parallel Processing and High Performance Computing Fall 2024

METAL’s HDX has an algorithm visualization of the construction of a quadtree.

Computing Sequentially on a Quadtree

The Jacobi iteration on a given quadtree is similar to the iteration you’ve done in the array-based
versions. However, since there may be a deeper quadtree in some parts of the domain, some leaf
quadrants have neighbors more or less refined than themselves.

In the above figure, the element “E” should compute its value based on the values of the shaded
neighbor quadrants. Note that E’s north neighbor is actually refined one level further, so it has
two immediate north neighbors. Ideally, the north neighbor value should be the average of the two

CSIS 335 Parallel Processing and High Performance Computing Fall 2024

immediate quadrant neighbors, but it is sufficient to use the value at the shaded quadrant (which is
the average of the four leaf quadrants).

One obstacle to overcome is to locate neighboring quadrants efficiently. It is possible to maintain
direct neighbor links within your quadtree structure, but you may find it more useful to search based
on coordinate information. Each quadrant knows its own bounding box coordinates and from this
can easily compute the coordinates of the adjacent quadrants at the same level. A nice feature of the
quadtree structure is that the quadrants that contain any point in space can easily be found with a
simple traversal from the root, determining the correct child at each step by comparing coordinates.
If the neighbor point is outside the root quadrant, you know to apply a boundary condition.

Sequential Program
https://github.com/SienaCSISParallelProcessing/quadtree-jacobi

To make the program more interesting in the context of adaptivity, our program will allow a wider
range of initial and boundary conditions than your previous implementations.

* Initial conditions are specified by a C function that provides values given (x,y) coordinates of
a point in the domain. Each leaf quadrant’s solution value is initialized to the value obtained
by passing the quadrant’s centroid to this function.

* Boundary conditions are also specified through C functions. The left and right boundaries
take the y coordinate as a parameter and the top and bottom boundaries take the x coordinate
as a parameter, allowing boundary conditions to be functions in addition to simple constants.
When a quadrant needs to query a boundary condition when computing its value, it should
call the appropriate function.

* Special “internal boundary conditions” are specified by one more C function. The function
takes a leaf quadrant and sets its value if the quadrant contains any points that have internal
boundary values. For example, if there is a point heat source at (0.25,0.25) keeping the
immediate area at a constant temperature of 2, this function will set the solution value of any
quadrant containing (0.25,0.25) to 2. This function should be called on each leaf quadrant
during each Jacobi iteration step. If the function sets the quadrant’s solution value, that value
should be used instead of the solution computed based on its neighbors.

These functions can be hard-coded into our program, but we could implement a system where
initial and boundary conditions can be specified through a configuration file instead.

The program will take several parameters:

1. an initial global refinement level, which in turn determines the initial number of leaf quad-
rants

2. aJacobi iteration tolerance, similar to the tolerance from the previous implementations

3. alimit on the number of Jacobi iteration steps

7

CSIS 335 Parallel Processing and High Performance Computing Fall 2024

4. arefinement threshold, specifying the maximum difference in temperature allowed between
adjacent leaf quadrants

5. alimit on the total number of refinement steps

Here is the result of the program when run on the unit square with the = 0 boundary condition set
to 2(y—0.5) when y > 0.5, the y = 1 boundary condition set to 1 —2z when x < 0.5, all other side
boundaries are fixed at 0, and a special boundary condition setting the point at (0.8,0.2) to 3. The
entire domain is initialized to 0. The initial quadtree is refined 3 levels (64 leaf quadrants), a Jacobi
tolerance of 0.0001 with a maximum number of iterations of 2000, and a refinement threshold of
0.05 and a maximum number of refinement levels of 3.

Approximate Solution to Laplace’s Equation

Sequential Program Design and Implemenation

The structure of the program looks something like this:

create quadtree to initial refinement level
set initial solution values of leaf quadrants to initial conditions
do {
do {
foreach leaf quadrant ({
if (!special boundary condition applied)
do Jacobi iteration step
}
} while (error > Jacobi tolerance && jac_steps < jac_max)
refine quadrants based on refinement threshold
} while (any quadrants were refined && ref_steps < ref_max)

CSIS 335 Parallel Processing and High Performance Computing Fall 2024

Even though our program is written in C instead of an object-oriented language like C++ or Java,
we will follow good object-oriented design. One way to do this is to separate the data structures
and functionality of the quadtree from the solution process.

We’ll start by looking at the main program, then look at quadtree-related structures and functions
as we encouter them.

Some things to notice at this point:

* The list of local variables in main is very short - just the pointer to the root of our quadtree
and several solution parameters and miscellaneous variables like loop indices and file point-
ers.

* The program requires 6 command-line arguments. In addition to the solution parameters
mentioned above, we have an “output level” that we can use to specify how frequently our
program will print solution data.

* We create the initial quadtree structure: the parameters are the bounding box (top, left,
bottom, right), the initial solution value, and the parent point (NULL for the root).

* Next, we have to do our initial global refinement.

— We do this with a visitor function that will in turn call a callback function with each
leaf quadrant as a parameter.

— The function visit_all_leaf_quadrants is, as you might suspect, a recursive
function. It takes as parameters the quadrant whose leaves are to be visited, a pointer
to the function to call on each leaf, and a pointer to some caller-specified data that will
also be passed along to the callback function. The function’s two options are:

% if we are already at a leaf, call the callback function

* 1f we are an interior quadrant, make a recursive call to the visitor function on each
child quadrant.

In this case, we use a callback function do_refine, which performs one level of
refinement on each leaf quadrant.

Our do_refine function just calls a quadtree function refine_leaf _quadrant.

The refine_leaf_quadrant function:

% Checks to make sure the quadrant is in fact a leaf. Note the use of the function
is_leaf_quadrant to check and the use of the macro ASSERT to terminate
our program with an error condition if this is not a leaf.

% Creates 4 new leaf quadrants, each i the size of the original leaf, and with the
former leaf as their parent.

This happens as many times as we specified for the initial refinement level (init _ref),
and results in a uniform quadtree with 47"/ Jeaves.

» Next, we need to set our initial conditions based on the function provided.

9

CSIS 335 Parallel Processing and High Performance Computing Fall 2024

— We again use our leaf quadrant visitor (leaves as the only quadrants that have a solution
value in our implementation) this time with set_init_cond as the callback function.

— The set_init_cond function calls our initial condition function initial_cond,
with the coordinates of the centroid of the leaf to get the appropriate initial condition
value for this leaf, then calls quadrant_set _value to assign it to the leaf.

* For the moment, we’ll ignore the solution printing and look at the solution process.

— Our main loop is a nested do/while. The outer loop guides solutions on different
refinements of the tree. The inner loop is the Jacobi iteration corresponding to what we
had done previously. We’ll consider that loop to start.

— The solution step is done with another visitor/callback.

* Like you did in your implementations earlier, we always do two iterations in suc-
cession: one to compute a second solution from the current, then another to com-
pute current again based on the second.

The callback do_jacobi_iter_phasel computes what we call previous
fromvalue, and do_jacobi_iter phasel computes value from previous.

% Each of these follows the same general procedure:

- Check to see if there is a special boundary condition that applies to this leaf.
This is done with the apply_other bc function. If a condition was applied,
the function returns true and we’re done with this leaf.

- Otherwise, we need to find our 4 neighbor values that we’ll be averaging to
get our new value. This is not as simple as changing array indicies by one like
we did when the computation was being done on a simple 2D array.

- Neighbor-finding in a quadtree involves a simple search. In our quadtree code,
it is done with the function neighbor_quadrant, which takes any quad-
rant and a direction and returns either a neighboring quadrant in the desired
direction, or NULL if there is no neighbor (i.e., we are on a boundary).

It is not even always clear what we mean by the “north neighbor” There is
potentially a whole hierarchy of quadrants neighboring us in a given direction.
What we need for our solution is the neighbor at our own level in the tree hier-
archy. If our neighbor is not refined as far as us, we’ll go ahead and use the leaf
at a higher level. If it is refined more, we want to use the leaf quadrants adja-
cent to us, but only count them once, even if more than one is adjacent. See the
recursive functions quadrant _side_value and quadrant_side_previous
for the details.

We find the appropriate neighbor by finding a point in space that we know will
be inside our neighbor in a given direction, then searching for that point in the
tree.

Something to think about: we could start this search at the root and work
down, but can we do better by searching up the tree to find our nearest ancestor
that contains the desired point, then back down to the appropriate leaf? This
is faster when our neighbors are most likely our siblings or cousins. Only

10

CSIS 335 Parallel Processing and High Performance Computing Fall 2024

in those cases where our neighbor is in a different level 1 quadrant will we
need to search all the way back to the root. This is the search we use in the
neighbor_quadrant function.

- Any neighbor search that returns NULL indicates that we’ve gone off the edge
of the universe and should use a boundary condition instead. We do this with
the bc_* functions.

- With the 4 neighbor or boundary values to average ready, we compute the new
value and store it in the quadrant.

- In the phase 2 computation, we also check the error value, where the maximum
encountered so far being passed in as maxerr. Note that this uses the extra
callback parameter to pass the pointer to main’s local variable max_jac_diff
to the callbacks. At the end, we’ll have the maximum error available in
max_jac_diff.

— After the 2 iterations, we check to see if we’ve reached our error tolerance or the max-
imum number of iterations.

We’ve ignored an important part here so far. The adaptivity. That’s the outer loop.

* Recall that we want to find places where adjacent quadrants have solution values whose
difference exceeds a given tolerance. When we find such situations, we want to refine the
tree in that area to have a more accurate solution. That’s what happening in the outer loop.

* The function calc_error_and refine is the heart of the refinement functionality. It
determines where refinement is needed, performs that refinement, then returns the number
of refinements that were performed. (If there are 0, we can stop processing, since we’d only
recompute the same solution we just computed on the previous grid.)

* The implementation of calc_error_and_refine again makes good use of our visitor
function in each phase of our refinement procedure:

— Marking quadrants for refinement: the check_if_refinement_needed function.
We locate each of our neighbors, then see if any of them have solution values too far
from our own. If one is found, we mark ourself for refinement.

Marking for refinement involves a little trick in the quadtree data structure. Since we
don’t have children when we’re a leaf, we use a non-zero value in the third child pointer
to indicate the refinement mark.

— Refining marked quadrants: the refine_if marked function. If the leaf being vis-
ited is marked for refinement, we refine it. Notice that the new quadrants inherit the
solution value from their parent. This means we use the last solution on one grid as the
initial solution on the next.

Finally, a bit about printing the solution. As you learned even in the non-adaptive versions you
wrote, it is nearly impossible to understand the solution based only on printing out values from

11

CSIS 335 Parallel Processing and High Performance Computing Fall 2024

the grid. This problem becomes even more difficuly once we include adaptivity. Our approach is
to print solutions to a file in a format that includes the coordinates of each leaf quadrant and its
solution value. These values may then be plotted with gnuplot. A script that I used to generate
some of the solution plots in these notes is available as solutionplot.gp. This is a very
simple gnuplot script and I am sure you can do better, but it gets the job done.

This version of the solver also has the ability to write solution files more frequently, and the scripts
in the video directory can be used to visualize these solutions and paste them together into a
solution animation.

Parallelization: Shared Memory

Our ultimate goal is to parallelize this program using either pure message passing (MPI only) or
a hybrid of message passing and shared memory (MPI processes, one per node, then a number of
threads per node that can take advantage of multiple cores).

There are many choices to make when parallelizing a program such as this. Which parts of the
computation are to be performed by each processor? What is the granularity of the units of work to
be divided among the processors? What information must be maintained and what communication
is needed to support the computation once the work has been divided? Will the workloads need to
be adjusted following adaptive steps? How can such a rebalancing be performed?

We can delay some of these concerns at the start by using shared memory first. We do need to
think about load balancing but it doesn’t matter which threads do which work, since the whole tree
and all solution values in it are shared.

The program in the pthreads directory of the repository is a version parallelized with pthreads.

First, the program needs to know the number of threads. Instead of adding a command-line param-
eter, this version uses an environment variable NUM_THREADS, whose value is retrived from the
environment by a call to getenv.

It makes sense here to keep it simple: use a traversal of the quadtree, where each thread gets about
the same number of leaf quadrants to compute, and each leaf’s new value is computed by exactly
one thread.

Much of the work can be done through a pthreads-aware versionof the visit_all _leaf quadrants
function: visit_leaf_quadrant_range.

Each time the quadtree is modified, a new range of leaf quadrants needs to be computed for each
thread. This range is then passed to the visit_leaf_quadrant_range function.

Study this function to see how it decides which parts of the tree to traverse on each thread.

Note, however, that the refinement step is complicated by the fact that it modifies the tree during
the traversal. In the serial case, this was just not a problem. We only refine leaves, and when
we are done visiting a leaf, whether it got refined or not, the traversal can continue. See the
calc_error_and_refine function for details on the approach taken.

12

CSIS 335 Parallel Processing and High Performance Computing Fall 2024

Parallelization: Message Passing
Parallelization of the adaptive quadtree computation using message passing is much more complex.

The following is a possible phased development process to a message passing parallelization.
Many details would need to be worked out, but this approach should be feasible.

Phase 1 Parallel computation on a uniform quadtree.

* Build the initial quadtree to the requested refinement level, replicated it completely on
each process. This will be referred to as the global quadtree.

» Assign a unique owner process to each leaf quadrant, essentially partitioning the quadtree.
Each quadrant’s solution is computed only by its owner, but quadrants along partition
boundaries will need to exchange solution values between iterations.

* There are many possible approaches to this partitioning problem, but it should be fairly
straightforward to divide the quadrants into partitions based on a tree traversal. If you
have n leaf quadrants and p processes, assign the first % to the first partition (process
0), the next % to the next partition (process 1), and so on, handling remainder quadrants
in some reasonable way. If child quadrants are ordered NW-NE-SW-SE, a partitioning
of a base quadtree refined to three levels might be done as follows:

* Message passing is needed to send solution information from owned quadrants on par-
tition boundaries to those other processes (and only to those other processes) that will
need the information during the solution process.

* There is no adaptivity for this phase, so the working program should compute only on
the initial quadtree.

* Solution output procedures would be needed to compare the solution from the parallel
version with those from the sequential version.

Phase 2 Introducing adaptivity.

13

CSIS 335 Parallel Processing and High Performance Computing Fall 2024

* Adaptivity would work much as it did in the sequential program, except that when a
quadrant is refined, it would only be refined on the process that owns that quadrant (or
its ancestor in the global quadtree). Once any quadrant from the global quadtree is re-
fined on some process, the quadtree is no longer full represented on all other processes.

* Working with the locally-refined quadtree is straightforward on the interiors of parti-
tions, but near partition boundaries, complications will arise.

— when computing solution values, neighbors can be owned by off-process copies of
the global quadtree that may have been refined

— when checking the difference in solution values for adaptivity control, off-process
neighbors might already be refined to different levels.

* possible approaches here include

— message-passing for the solution-value exchange could include the entire refine-
ment structure for neighbor quadrants from the global quadtree

— at least some partial refinements could be conducted of the off-process copies of
global quadrants that need to be involved in interprocess communication.

Phase 3 Dynamic load balancing.

* Adaptivity will likely introduce a load imbalance. If all or most of the refinement takes
place in just a few processes, those processes will have a larger workload during each
Jacobi iteration, causing other processes to wait before the boundary exchange.

 After each refinement phase, a rebalancing phase should be conducted, where the par-
titions of the global quadtree structure are adjusted (and refined parts of the tree mi-
grated appropriately) to ensure that each process has approximately the same number
of owned leaf quadrants.

* To keep this relatively straightforward, the units of work that are allowed to be migrated
can be restricted to be the leaves of the global quadtree.

* A disadvantage of this is that the granularity of the “work objects” that you are parti-
tioning can get large after several refinement steps have occurred, meaning a perfect
load balance may not be possible.

* Once adaptivity has been performed, the computational costs of each global quadtree
leaf will be different, and it is those costs that should be balanced across the processes,
not the number of global quadtree leaf quadrants on each process.

* Message passing to share those costs is straightforward (which of our communication
patterns would that be?), and allows each process to compute this new decomposition
independently and to determine which parts of its tree need to be sent elsewhere. The
actual migration of the refined quadtree structures will introduce some complexity.

An actual implementation is beyond what can reasonably be completed in a short-term project for
this course.

14

CSIS 335 Parallel Processing and High Performance Computing Fall 2024

Partitioning and Dynamic Load Balancing

We have considered partitioning and dynamic load balancing in some specific situations. Let’s
now think about it in more general circumstances.

Our assumption here is that we have a computation whose memory and computational require-
ments are dominated by some set of objects that we distribute among a set of cooperating proces-
sors. We will most often think of this as a mesh being used to solve a PDE, but other structures are
possible.

Typically, one process is assigned to each processor. Data are distributed among the processes,
and each process computes the solution on its local data (its subdomain). Inter-process communi-
cation provides data that are needed by a process but “owned” by a different process. This model
introduces complications including

1. assigning data to subdomains (i.e., partitioning, or when the data is already distributed,
dynamic load balancing)

2. constructing and maintaining distributed data structures that allow for efficient data migra-
tion and access to data assigned to other processes, and

3. communicating the data as needed during the solution process.

More details on partitioning and dynamic load balancing have been moved to a separate slide deck.

15

