
CSIS-335 Partitioning and Dynamic Load Balancing

Jim Teresco

December 2-6, 2024
Yet another Powerpoint-free presentation!



Scientific Computation Basics
• Scientists and engineers in many disciplines now rely on simulation

• The governing equations and numerical methods vary

• An important class of problems may be solved
using the finite element or related methods

– discretize the domain into “elements”
– elements form the “mesh”
– solve on each element, “paste together” to obtain solution
– an element’s solution depends on its and its neighbors’ previous values

E1 E2

E6

E9

E12

E10
E11

E13

E8

E7E5

E4E3 For example, at iteration i + 1, the value at E5
is a function of the iteration i value of E5 and

the iteration i values of E4, E7, and E11.

• We will think of these elements as our units of computational work



Parallel Scientific Computation
• Parallel approach: assign disjoint subsets of the mesh to separate processes

• To do this: partition the mesh into disjoint subdomains

−→

Subdomain 2Subdomain 0

Subdomain 1

Subdomain 3

– Goal: equal work to each, minimize necessary communication

• Partitioning is a major research field in its own right

– geometric methods: use coordinates only (including Octrees)
– graph-based methods: use mesh connectivity
– not today’s focus — we will assume good methods exist (they do!)



Parallel Scientific Computation: Complications
Many complications worth mentioning

• Distributed data structures

– locating off-process data
– interprocess boundary structures
– interprocess links

• Adaptivity – the mesh changes with the solution

– a good partitioning will become imbalanced
– need mesh migration
– need dynamic load balancing methods

• Parallel development and debugging is hard

– many threads of execution
– relative execution speeds differ
– message ordering adds nondeterminism
– some errors do not surface except in large cases on many processors

Subdomain 2Subdomain 0

Subdomain 1

Subdomain 3

Subdomain 2Subdomain 0

Subdomain 1

Subdomain 3



Parallel Mesh Data Structures

• interprocessor boundary structures

• Adaptivity leads to load imbalance: dynamic redisribution is necessary



Parallel Mesh Data Structures
Example: Parallel Mesh Database

• Distributed structure supported by a “partition boundary” data structure

• Doubly-linked list of entities on partition boundaries

• Unique owner process for duplicate entities

• All copies know about the unique owner, owner knows about all remote
copies

• This involves storing pointers to the memory of a different process!

• See pmdb/include/private/pmdb data st.h

• Partition Boundary Operators

– Partition boundary query operators
– Interprocessor link update operators
– Scatter-Gather maps



Primary Research Efforts: Dynamic Load Balancing

• Problem: keep the cooperating processors doing useful work

– underloaded processors sit idle waiting for others to complete work

Unbalanced Balanced
100 300

P0

P1

0 200 1500

P0

P1

75 225

• Main application domain: parallel adaptive scientific computation

• Older work (mid-late 1990s): support tools

– implementation of distributed data structures
– dynamic load balancing algorithms and implementations
– focus on large-scale parallel computers of the era

• More recently: resource-aware parallel computation

– focus on clusters, in particular heterogeneous and hierarchical clusters

• Today: what do we need to do to take better advantage of all of these cores?



Parallel Scientific Computation Examples
These kinds of methods apply to a wide variety of problems.



Parallel Adaptive Computation Flow

Implementations/Support Tools

Load

Rebalance

Step

Adaptive

Error

Evaluate

ComputePartitioning

Setup/Initial

Application Software
done

!done

OK

!OK

Load Balancing Suite
Partitioning and Dynamic Load Balancing



Partition Quality

What makes for a “high-quality” partitioning of a mesh?

• Big goals for partitioning and dynamic load balancing

– divide the work evenly for computational balance
– minimize the needed interprocess communication

• Additional goal dynamic load balancing

– minimize the change from the current partitioning in the rebalancing

These goals are often competing!



Partition Quality

• Computational balance

– about the same number of elements per partition
– use a weighting if computational costs vary

• Minimize interprocess communication

– communication is necessitated by elements whose neighbors are on a
different process

– Possible metrics (Bottasso, et. al, 1995)

* a partition’s surface index is the percentage of all element adjacencies
are on a partition boundary

* the maximum local surface index is the largest surface index of any
partition

* the global surface index is the percentages of all element adjacencies
are on any partition boundary



Partition Quality
Surface index implications

• maximum local surface index

– largest “surface-to-volume ratio” (in 3D meshes) on any process
– worst case communication relative to on-process data

• global surface index

– total communication volume among all processes normalized by com-
putation - related to the number of “cuts” that a partition creates

More important in some circumstances (high-latency communications) are

• maximum interprocess adjacency

– maximum percentage of other processes with which some process must
communicate

• average interprocess adjacency

– average percentage of adjacent processes across all processes



Partition Quality
Let’s compute partitioning metrics for the earlier simple example:

Subdomain 2Subdomain 0

Subdomain 1

Subdomain 3



Mesh Partitioning/Load Balancing Methods

Procedures can be categorized by several features and characteristics

• Computational cost

• Parallel efficiency

• Resulting partition quality – may trade balance for better boundary size

• Incrementality

– are new partitions as similar as possible to previous partitions?

• Input information required

– geometric methods – use coordinate information only
– graph-based methods – use connectivity information
– hybrid methods – use both coordinates and connectivity



Geometric Mesh Partitioning/Load Balancing
Use only coordinate information

• Most commonly use “cutting planes” to divide the mesh

• Tend to be fast, and can achieve strict load balance

• “Unfortunate” cuts may lead to larger partition boundaries

– cut through a highly refined region

• May be the only option when only coordinates are available

• May be especially beneficial when spatial searches are needed

– contact problems in crash simulations



Recursive Bisection Mesh Partitioning/Load Balancing
Simple geometric methods

• Recursive methods, recursive cuts determined by

Coordinate Bisection (RCB) Inertial Bisection (RIB)

Cut 2

Cut 2

Cut 1

• Simple and fast

• RCB is incremental

• Partition quality may be poor

• Boundary size may be reduced by a post-processing “smoothing” step



Octree/SFC Mesh Partitioning/Load Balancing
• Quadtree/Octree structure may be used to coarsen the structure

1. insert elements into a quadtree/octree structure

2. assign weights to octants

3. partition through SFC-based truncated tree traversal

• SFC/Octree methods produce medium-quality decompositions produced at
low cost



SFC Mesh Partitioning/Load Balancing
Another geometric method

• Use the locality-preserving properties of space-filling curves (SFCs)

• Each element is assigned a coordinate along an SFC

– a linearization of the objects in two- or three-dimensional space

• Hilbert SFC is most effective (check out HDX SFC traversal examples)

II I

IIIIV



SFC Mesh Partitioning/Load Balancing
A closer look at the excellent Hilbert 3D refinement.



Graph-Based Mesh Partitioning/Load Balancing
Use connectivity information

• Spectral methods (Chaco)

– prohibitively expensive and difficult to parallelize
– produces excellent partitions

• Multilevel partitioning (Parmetis, Jostle)

– much faster than spectral, but still more expensive than geometric
– quality of partitions approaches that of spectral methods

• May introduce some load imbalance to improve boundary sizes



Dynamic Load Balancing
• Partitioning/dynamic load balancing important for efficiency

• Usual concerns: computational balance, communication minimization

• It’s not just graph partitioning

Cut 2

Cut 2

Cut 1

II I

IIIIV

• Experts have developed reusable software libraries: Parmetis, Zoltan, etc.

• Still an active research area

• A common feature of many codes, applications
See: chapter “Partitioning and Dynamic Load Balancing for the Nu-
merical Solution of Partial Differential Equations” by J. D. Teresco,
K. D. Devine, J. E. Flaherty, in LNCSE 51, Numerical Solution of Par-
tial Differential Equations on Parallel Computers, Bruaset, Are Mag-
nus; Tveito, Aslak (Eds.), Springer, 2006.



Zoltan Toolkit

Includes suite of partitioning algorithms, developed at

• General interface to a variety of partitioners and load balancers

• Application programmer can avoid the details of load balancing

• Interact with application through callback functions and migration arrays

– “data structure neutral” design

• Switch among load balancers easily; experiment to find what works best

• Provides high quality implementations of:

– Orthogonal bisection, Inertial bisection
– Octree/SFC partitioning (with Loy, Gervasio, Campbell – RPI)
– Hilbert SFC partitioning (Edwards, Heaphy – Sandia; Bauer – Buffalo)
– Refinement tree balancing (Mitchell – NIST)

• Provides interfaces for:

– Metis/Parmetis (Karypis, Kumar, Schloegel – Minnesota)
– Jostle (Walshaw – Greenwich)

• Freely available: http://www.cs.sandia.gov/Zoltan/


