
Computer Science 335
Parallel Processing and HPC
Siena College
Fall 2024

Programming Project 6: Pthreads Programming
Due: 4:00 PM, Friday, November 15, 2024

In this programming project, you will use POSIX threads to parallelize two programs: one is a
program to find palindromic words in a large dictionary and the other is the very familiar Jacobi
iteration.

You may work alone or with a partner or two on this programming project. However, in order
to make sure you learn the material and are well-prepared for the exams, those who work in a
group should either collaborate closely while completing the programs or work through the them
individually then discuss them within your group to agree on a solution. In particular, the “you
do these and I’ll do these” approach is sure to leave you unprepared for upcoming tasks and the
exams.

There is a significant amount of work to be done here. It will be difficult if not impossible to
complete the assignment if you wait until the last minute. Expect to ask a lot of questions. A slow
and steady approach will be much more effective.

Learning goals:

1. To gain experience working with POSIX threads

Getting Set Up
In Canvas, you will find a link to follow to set up your GitHub repository, which will be named
pthreadprogs-proj-yourgitname, for this programming project. Only one member of
the group should follow the link to set up the repository on GitHub, then others should request a
link to be granted write access.

All GitHub repositories must be created with all group members having write access and all group
member names specified in the README.md file by 4:00 PM, Wednesday, November 6, 2024.
This applies to those who choose to work alone as well!

You may choose to answer the lab questions in the README.md file in the top-level directory of
your repository, or upload a document with your responses to your repository, or add a link to a
shared document containing your responses to the README.md file.

Palindromic Word Finder
Please complete this part in the pal directory of your repository.

There is a dictionary file /usr/share/dict/words on noreaster that can be used by programs
that need to do spell checking. You know that a palindrome is a word or phrase that reads the same

CSIS 335 Parallel Processing and High Performance Computing Fall 2024

in either direction, i.e., if you reverse all the letters you get the same word or phrase. A word is
palindromic if its reverse is also in the dictionary. All palindromes are trivially palindromic, like
“noon” for example, because it is own reverse. A word like “draw” is palindromic because “ward”
is also in the dictionary.

Your task is write a C program to find all palindromic words in the dictionary. Include a Makefile
that builds your program. You should first write a sequential program and then parallelize it, using
the bag-of-tasks paradigm. However, keep your plan for parallelization in mind when designing
and implementing the sequential version. You might want to do some things in the sequential pro-
gram that you will need in the parallel program, such as finding where each letter begins in the
dictionary (see below for more on this).

Your sequential program should have the following phases:

• Read the file /usr/share/dict/words into an array of strings. You can determine the
size of this array ahead of time by running wc on the dictionary to see how many words it
contains. You may assume that each word is at most 28 characters long when running on
FreeBSD and 45 characters long when running on Linux.
Aside: I figured this out with the command

awk ’ { if (length($1) > max) max = length($0) } \
END { print max } ’ words

and the longest word (on Linux) is “pneumonoultramicroscopicsilicovolcanoconiosis”.
• For each word, compute its reverse and do a linear search of the dictionary to see if the

reverse of the word is in the dictionary. If so, mark the word and increment your counter of
the total number of palindromic words. To improve efficiency, keep track of the positions in
your array that store the first word beginning with each letter of the alphabet. Then you can
search only within that letter’s range when searching for a word’s reverse.

• Print the total number of palindromic words to the screen (stdout).

Words in the dictionary could start with numbers or punctuation; you can either skip over them or
process them, as you wish. None are of these are palindromic in FreeBSD’s words file, so this
choice will not affect your total count. (This is no longer true with linux.words, which now
contains “2”, but you may still ignore it or not, as you see fit. Some words start with capital
letters (and hence the dictionary is not sorted in ASCII order). To keep your program simple, leave
the capitals alone and do case-sensitive comparisons.

The sequential program should be fairly straightforward, but it will likely take longer than you
expect to implement. Please ask if you run into trouble with the sequential version! You will need
to get it done soon enough to leave enough time left to work on the parallelization – which is the
whole point, of course.

Question 1: Give the GitHub link from the last commit that completed your sequential implemen-
tation.

After you have a working sequential program, modify it to use the bag-of-tasks paradigm, imple-
mented using the pthreads library. Your parallel program should use W worker threads, where W

2

CSIS 335 Parallel Processing and High Performance Computing Fall 2024

is a command-line argument. Use the workers just for the compute phase; do the input and output
phases sequentially. Each worker should count the number of palindromic words that it finds. Sum
these W values during the output phase. This avoids a critical section during the compute phase
– you’ll need to deal with others, though. Use 26 tasks in your program, one for each letter of the
alphabet. In particular, the first task is to examine all words that begin with “a” (and numbers),
the second task is to examine all words that begin with “b”, and so on. During the input phase
you should build an efficient representation for the bag of tasks; I suggest using an array, where
the value in task[0] is the index of the first “a” word, task[1] is the index of the first “b”
word, and so on. You can also use this array during the search phase to limit the scope of your
linear searches. Your parallel program should also time the compute phase. You may use the
timer.c and timer.h code from our class examples. Start the clock just before you create the
workers; read it again as soon as they have finished. Write the elapsed time for the compute phase
to stdout.

To summarize, your program should have the following output:

• total number of palindromic words (to stdout)
• the number found by each worker (to stdout)
• the elapsed time for the compute phase (to stdout)

Question 2: Execute your parallel program on noreaster using 1, 2, 4, 8, 16, and 26 workers. Run
each test 3 times. Create a table of results; it should contain all the values written to standard
output (but not the words themselves) for all 18 test runs, and a brief analysis of the speedup and
parallel efficiency you have achieved. (10 points)

Question 3: Repeat your experiment on a Stampede3 node. Please see the notes below about this.
(5 points)

Note that the dictionary file for Linux is different, and not installed by default on Stampede3
nodes. You should transfer a copy of /usr/share/dict/linux.words from another Linux
machine such as olsen.cs.siena.edu (use sftp from a Stampede3 login node back here to
olsen to keep this simple). Place it right in your directory with your code and executable, but since
the file is large, please do not have it tracked by git. I will obtain my own copy for testing when I
grade your submissions. This file has more words and includes longer words, so be sure to make
any needed code changes before running there. You must follow the guidelines about where to
compile (login nodes) and where you can run your tests (an interactive node allocated with idev
or a batch node allocated through Slurm).

Your pal directory should include your Makefile, your C source code, and a note in README.md
file expaining how to run your program. Please do not include object files or your executable in
the repository.

Bonus Opportunity

Note: this bonus opportunity can only be achieved once a working version of the program
satisfying the requirements has been completed. Once you have done that, create a new version
in the bonus directory of your repository for your bonus version.

3

CSIS 335 Parallel Processing and High Performance Computing Fall 2024

Some have expressed concerns that the requirements above do not allow for the most efficient
possible solutions. This is a good point – high-performance computing is not just about parallelism,
but about getting the solution as quickly as possible taking all possible mechanisms to do so into
account. So let’s see what we can come up with. A bonus of up to 10 points will be awarded for
bonus submissions that solve the problem significantly faster. The fastest submission will earn the
full 10 points, second-fastest 7 points, and all others judged to achieve a significant speedup over
the original version will earn 5 points.

In addition to your program, you must include timing results and a some text describing what en-
hancements you made and how they improve the overall efficiency. Include these in the README.md
file in the bonus directory

Multithreaded Jacobi Iteration
It’s back again! In the jacobi directory of your repository, write a version of the Jacobi iteration
program that uses POSIX threads for parallelization. You may use your own serial implementation
as a starting point, or use my sample solution (available on request).

The functionality should be the same as our previous versions, and your solution output should be
identical to the serial version and to your MPI version.

Requirements and suggestions:

• Your program should take an extra first command-line parameter, which specifies the number
of threads to create. The usage message from my version now looks like this:

Usage: ./jacobi num_threads size max_iter tolerance [outfile]

• As with previous versions, the optional “outfile” parameter determinies how the solution
data is output: only the summary line if the parameter is omitted, a human-readable matrix of
solution values in the parameter is specified as -, and for any other string a gnuplot-plottable
output file with that string as the filename.

• You may create a new set of computational threads for each iteration pair and wait for them
to finish, or create your threads once and have them perform the entire computational loop.

• It might not be a great practice in general to have a lot of global variables, but it is a very
convenient way to share data among all of your threads. Take advantage of this to keep your
code as simple as possible, especially in sharing the grids and other simulation parameters
that will be needed within the threads.

• You will need to be careful about using barriers and mutexes where necessary, but avoid
extraneous use of these constructs, which can lead to performance degradation.

• Take advantage of the fact that each row should cost about the same to compute and divide
up the rows among threads like we did among the processes for the MPI version. Good news:
no messages need to be exchanged among threads, but make sure you don’t start using values
computed by other threads before they’ve been computed!

4

CSIS 335 Parallel Processing and High Performance Computing Fall 2024

• You are not required to parallelize the grid initialization step but you may do so if you wish.

• Don’t forget to destroy any barriers or mutexes your code uses.

• All solution output can be done by the original thread that executes main after the compu-
tational threads have completed their work.

Question 4: Find a problem size and a number of iterations that runs for between 2 and 5 minutes
using a single thread on noreaster. Run that same problem instance with 2, 4, 8, 16, and 32 threads
and time each. Present a table of run times, speedups, and efficiencies. (10 points)

Submission
Commit and push!

Grading
This assignment will be graded out of 100 points.

Feature Value Score
Palindromic Makefile 1
Palindromic sequential correctness 12
Palindromic Pthread correctness 15
Palindromic code style/documentation 5
Question 2: Palindromic timing studies 10
Question 3: Palindromic timing studies 5
Bonus Version (up to 10 pts) 0
Jacobi Makefile 1
Jacobi command-line parameters 2
Jacobi grid allocation 5
Multithreaded Jacobi iteration 15
Jacobi correct and efficient iteration limit stop 4
Jacobi correct and efficient error tolerance stop 4
Jacobi print simulation stats 2
Jacobi print/write solutions 4
Jacobi style/documentation 5
Question 4: Jacobi timing studies 10
Total 100

5

