Computer Science 335

Parallel Processing and HPC
SIENAcollege Siena College

Computer Science Fa“ 2024

Lab 10: OpenMP Practice
Due: 4:00 PM, Friday, November 22, 2024

In this lab, you will get a little practice parallelizing programs with OpenMP.

You may form groups of 2 if you wish. You should write your programs in your own (or your
own group’s) repository and answer the questions on this lab in your own document, as we work
together as a class through the tasks.

Learning goals:

1. To practice using OpenMP to parallelize programs.

Getting Set Up

In Canvas, you will find a link to follow to set up your GitHub repository, which will be named
openmp-lab-yourgitname, for this lab. Only one member of the group should follow the
link to set up the repository on GitHub, then others should request a link to be granted write access.

You may choose to answer the lab questions in the README . md file in the top-level directory of
your repository, or upload a document with your responses to your repository, or add a link to a
shared document containing your responses to the README . md file.

More Pi

No, we’re not going to do Jacobi iteration again, but we will revisit a familiar problem.

Practice Program: Write an OpenMP version of the Monte Carlo approximation of 7. Call
your program openmp_pi . c in the pi directory of your repository. See below for some
tips. (20 points)

* Your program should take one command-line parameter: the number of random points to
be generated by each thread. Let OpenMP determine the number of threads based on the
OMP _NUM_THREADS environment variable.

* Each thread in the parallel block will compute and report its own estimate of 7.

* Use a reduction directive to combine the number of points in the circle to get your total
for the final approximation.

CSIS 335 Parallel Processing and High Performance Computing Fall 2024

Practice Program: Add appropriate timers to each of your Monte Carlo 7 approximation
programs (MPI, pthreads, OpenMP) to report the time taken to compute the entire approxi-
mation. Include all three programs in the t imepi directory of your repository. (5 points)

Question 1: Run each of your Monte Carlo 7 approximation programs (MPI, pthreads, OpenMP)
with 16, 32, and 64 processes/threads on a Stampede3 production node (can be either interactive
or batch, whatever you prefer) and 1 billion points per process/thread. Report the times taken in
tabular form. (10 points)

Question 2: Discuss what these timings tell you about the relative efficiencies of the three versions
of the program. (5 points)

Another Closest Pairs Variant
This section’s program will be graded as a practice program and is worth 25 points.

In the cp directory of your repository, you will find a copy of the OpenMP closest pairs code
from the class example. Your task is to remove the shared variable access by adding an array of
structs where each thread can put its solution, and the main thread finds and reports the overall
winner. This mode of operation of this program will be selected by passing the string noshared
in argv [1]. The following steps will guide you.

1. Add the new mode to the parameter check near the start of main.

2. Add a third case to the condition under the “// do it” commentinmain. Call a function
(which you will write next) tmg_closest _pair_omp_noshared with the same param-
eter list as the others.

3. Define a st ruct with three fields to hold the two indices into the array of vertices and the
distance between them that will hold the information about a “leading” pair.

4. Make a copy of the tmg_closest_pair_omp_coarse function and name it tmg_clos—
est_pair_omp_noshared.

5. Remove the variables v1, v2, and distance from the shared clause on the parallel
directive near the start of the function.

6. Move the declaration of the num_threads variable before the parallel directive, since
we will need its value after the parallel block. Also, add num_threads to the shared
clause of the parallel directive.

7. Move the two function calls that get the number of threads and thread number to the start of
the parallel block. Don’t forget that you no longer need to declare num_threads since
it’s declared outside of the parallel block and that variable will be shared by all of the
threads.

8. Outside the parallel block, declare a variable that points to an array of the st ruct you
defined above. If it’s called 1eader, your declaration will look like:

2

CSIS 335 Parallel Processing and High Performance Computing Fall 2024

leader =*leaders;

This will point to an array of these st ructs, one for each thread. Note that we cannot
construct that array yet because we can’t find out how many threads there will be until we
get into the parallel block.

9. Add the 1eader variable you declared in the previous step to the shared clause.

10. Now we can allocate space for the array, but we want to make sure it gets created just once.
Place the appropriate malloc below a single directive to ensure that only one thread
executes it. The statement should allocate an array of the st ructs, one per thread.

11. The 1leader array will be accessed by the threads, but each will access only the one at the
index corresponding to its thread number. But we need to make sure that the one thread that
is chosen to create it has completed its work before any thread tries to access it. So follow
the statement with a barrier directive.

12. Replace the 1ocal v1, local v2, and local _distance variables with references to
leaders[thread_num] .v1l, leaders|[thread_num] .v2,and leaders[thread_—
num] .distance, respectively.

13. Remove the critical directive and its 1 f statement at the end of the parallel block.

14. Now, outside of the parallel block, add a loop over the 1eaders array to find the one
with the smallest distance, and store those vertex indices and the distance in v1, v2, and
distance.

15. free the memory you allocated for the 1eaders array.

16. Test your code.

Submission

Commit and push!

Grading

This assignment will be graded out of 65 points.

| Feature | Value | Score |
OpenMP pi 20
Timers in pi programs 5
Question 1: timings 10
Question 2: timing analysis 5
closest pairs variant 25
| Total | 65 | |

