Computer Science 335

Parallel Processing and HPC
SIENAcollege Siena College

Computer Science Fa“ 2024

Programming Project 4: Collective Communication
Due: 4:00 PM, Tuesday, October 8, 2024

In this programming project, you will work with more of MPI’s collective communication func-
tionality.

You may work alone or with a partner on this programming project.

There is a significant amount of work to be done here. It will be difficult if not impossible to
complete the assignment if you wait until the last minute. A slow and steady approach will be
much more effective.

Learning goals:

1. To learn about more efficient communication patterns.

2. To gain experience using MPI collective communication functionality.

Getting Set Up

In Canvas, you will find a link to follow to set up your GitHub repository, which will be named
coll2-proj-yourgitname, for this programming project. Only one member of the group
should follow the link to set up the repository on GitHub, then others should request a link to be
granted write access.

You may choose to answer the lab questions in the README . md file in the top-level directory of
your repository, or upload a document with your responses to your repository, or add a link to a
shared document containing your responses to the README . md file.

Improving RDS

Section 3.4.1 of Pacheco shows how we can improve the gathering of values from the processes at
all ranks back to the rank O process for operations such as a global sum. Such a mechanism can be
used to improve the speed of the communication at end of the RDS program from the earlier lab.

Practice Program: Copy your RDS program to the t ree directory of your repository and
rename it as mpirds—-tree.c. Replace the (p — 1)-step computation of the global sums
with one using a tree-structured global sum, but using only point-to-point communication.
You may use a structure like that in either Figure 3.6 or Figure 3.7, or one of your own
design, as long as it has the same efficiency. You may assume that the total number of
processes is a power of 2 (but do error checking on this if you make this assumption). No
collective communication functions yet! (10 points)

CSIS 335 Parallel Processing and High Performance Computing Fall 2024

For the questions below, assume you are running your original or improved programs with 512
processes. You don’t need to run it, just base your answers on your code.

Question 1: How many total messages are sent and received in your original program to compute
the global sum? (1 point)

Question 2: How many “communication phases” are needed by your original program to compute
the global sum? That is, what is the longest sequence of consecutive sends or receives by any one
process? (1 point)

Question 3: How many addition operations are needed by your original program in the computa-
tion of the global sum? (1 point)

Question 4: How many total messages are sent and received in your improved program to compute
the global sum? (1 point)

Question 5: How many “communication phases” are needed by your improved program to com-
pute the global sum? That is, what is the longest sequence of consecutive sends or receives by any
one process? (1 point)

Question 6: How many addition operations are needed by your improved program in the compu-
tation of the global sum? (1 point)

Of course you have been doing the readings and keeping up with your lab work, so you have real-
ized that this communication can be done with one of MPI’s higher-level collective communication
routines: an MPTI_Reduce.

Practice Program: Copy your RDS program to the reduce directory of your repository
and rename it as mpirds—reduce. c, replace the computation of the global sums with an
appropriate function call to do the entire reduction. (5 points)

A Monte Carlo Method to Compute 7

There is a class of algorithms knows as Monte Carlo methods that use random numbers to help
compute some result.

We will write a parallel program that uses a Monte Carlo method to estimate the value of 7.

The algorithm is fairly straightforward. We repeatedly choose (z, y) coordinate pairs, where the z
and y values are in the range 0-1 (i.e.the square with corners at (0,0) and (1, 1). For each pair, we
determine if its distance from (0, 0) is less than or equal to 1. If it is, it means that point lies within
the first quardant of a unit circle. Otherwise, it lies outside. If we have a truly random sample
of points, there should be an equal probability that they have been chosen at any location in our
square domain. The space within the circle occupies 7 of the square of area 1.

So we can approximate 7 by taking the number of random points found to be within the unit circle,
dividing that by the total number of points and multiplying it by 4!

A sequential Java program that uses this method to approximate 7 is included for your reference
in the pi directory of your repository.

CSIS 335 Parallel Processing and High Performance Computing Fall 2024

Practice Program: Write a C program pi . c in the pi directory of your repository. Your
program should be parallelized with MPI, and compute an approximation of 7 using the
Monte Carlo method described. See below for some additional requirements and sugges-
tions. (25 points)

* Your program should take a single command-line parameter, which is the number of random
points to generate on each process. Store this in a 1ong so you can generate large numbers
of points to get good approximations. Convert this to a 1ong only on the rank 0 process
(with good error checking) and use MPI to broadcast the value to all other processes. If the
rank O process finds an error condition when parsing the command-line parameter, it should
call MPI_Abort to terminate the computation.

* Use the drand48 function to generate your random numbers. Each process needs to seed
the random number generator with a different value so they all will compute a different
pseudorandom sequence. You might make the seed a function of the current time, the rank,
and maybe the number of processes.

* No process other than the rank 0 process should produce output.

 After each process has generated its random points and counted the number that lie within the
unit circle, gather all of those counts back to the rank O process so it can print out information
and compute the approximation of 7.

Here is a sample run of my program, on 4 processes with 100,000,000 points per process. Your
program should output the same information in a similar format. Of course, we are choosing
random numbers, so your answers will vary.

Will use 100000000 points per process

[0] 78540219 in circle, pi approx = 3.141609

[1] 78538052 in circle, pi approx = 3.141522

[2] 78541818 in circle, pi approx = 3.141673

[3] 78543977 in circle, pi approx = 3.141759

in circle values range from 78538052 to 78543977
Final approximation of pi: 3.141641

Question 7: Run your program for 1 billion points per process on 48, 96, and 192 processes on
Stampede3. Rename your output files to stampede48.output, stampede96.output,
and stampedel 92 . output, and include them in your repository. (4 points)

Submission

Commit and push! Make sure your answers to lab questions are provided using one of the mecha-
nisms mentioned in the “Getting Set Up” part of the lab.

CSIS 335 Parallel Processing and High Performance Computing Fall 2024

Grading

This assignment will be graded out of 50 points.

| Feature | Value | Score |

mpirds-tree.c

Question 1

Question 2

Question 3

Question 4

Question 5

Question 6

mpirds—-reduce.c

pi.c command-line parameter handling/checking/broadcast
pi.c random numbers

pi.c each rank computes its count
pi . c gather counts to rank O

pi . c print counts/pi approximations
Question 7: output files

’ Total

[U)] —
O-PLIIO\O\UJLI‘IUIP—‘P—‘P—‘HHHO

