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Topic Notes: Critical Sections with POSIX Threads

You were introduced to the basics of POSIX Threads or pthreads in our current lab.

The basic idea is that we can create and destroy threads of execution in a program, on the fly, during
its execution. These threads can then be executed in parallel by the operating system scheduler.
If we have multiple processors, we should be able to achieve a speedup over the single-threaded
equivalent.

In the lab, you saw how to do perform the basics:

e pthread_create — Creates a new thread, stores a thread id that can be used to refer to
this thread later in the first parameter, and runs the function specified as the third parameter
in a new thread.

e pthread exit — Causes the calling thread to exit. This is called implicitly if the thread
function called during the thread creation returns. Its argument is a return status value, which
can be retrieved by pthread_join ().

e pthread_join — Causes the calling thread to block (wait) until the thread with the identi-
fier passed as the first argument to pthread_join has exited, can optionally pass a second
argument as a pointer to a location where the return status passed to pthread_exit () can
be stored.

Brief Review of Critical Sections

A great thing about using threads instead of message passing is that different threads can share
memory, meaning when one thread needs information that another is “responsible” for, it can
usually just access that information.

However, as you have seen in other contexts, concurrent access to shared variables can be danger-
ous.

To see this, we will look at a series of examples in
https://github.com/SienaCSISParallelProcessing/pthread-mutex
We will first look at the program in pthread _danger.

Before we look at the potential problems here, notice that there is a bit of extra initialization in
these examples. This is necessary in some pthreads implementations to make sure the system will
allow your threads to make use of all available processors. It may, by default, allow only one thread
in your program to be executing at any given time. If your program will create up to n concurrent
threads, you can make the call:
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pthread_setconcurrency (n+l);

somewhere before your first thread creation. The “+1” is needed to account for the original thread
plus the n you plan to create.

You may also want to specify actual attributes as the second argument to pthread_create ().
To do this, declare a variable for the attributes:

pthread_attr_t attr;

and initialize it with:
pthread_attr_init (&attr);

and set parameters on the attributes with calls such as:
pthread_attr_setscope(&attr, PTHREAD_SCOPE_PROCESS) ;

Then, you can pass in &attr as the second parameter to pthread create ().

For the FreeBSD and Linux implementations we are using, the defaults appear to work well, so
you can safely leave these extra steps out.

As for the main “functionality” here, we can see that the program creates whatever number of
threads are specified by the program’s command-line parameter. Each of those threads increments
a shared global variable counter 100,000 times.

Run it with one thread, and we get 100000. What if we run it with 2 threads? On a multiprocessor,
it is going to give the wrong answer! Why?

The answer is that we have concurrent access to the shared variable counter. Suppose that two
threads are each about to execute counter++, what can go wrong?

counter++ really requires three machine instructions: (z) load a register with the value of
counter’s memory location, (27) increment the register, and (7:¢) store the register value back
in counter’s memory location. Even on a single processor, the operating system could switch
the process out in the middle of this. With multiple processors, the statements really could be
happening concurrently.

Consider two threads running the statements that modify counter:

Thread A | Thread B
A; RO = counter; B; Rl = counter;
A2 RO = RO + 1; B2 R1 = R1 + 1;

As counter = RO; B; counter = R1;

Consider one possible ordering: A; As By A3 By B3, where counter=17 before starting. Uh
oh.
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What we have here is a race condition that can lead to interference of the actions of one thread with
another. We need to make sure that when one process starts modifying counter, that it finishes
before the other can try to modify it. This requires synchronization of the processes.

If we run it on a single-processor system (do they make those anymore?), the problem is much less
likely to show itself - we will probably get the correct result when we run it. However, there is no
guarantee that this would be the case. The operating system could switch threads in the middle of
the load-increment-store, resulting in a race condition and an incorrect result.

We need to make those statements that increment counter atomic. We say that the modification
of counter is a critical section.

There are many solutions to the critical section problem and this is a major topic in an operating
systems course. But for our purposes, at least for now, it is sufficient to recognize the problem, and
use available tools to deal with it.

Mutual Exclusion with pthreads

The pthread library provides a construct called a mutex (short for the mutual exclusion that we
want to enforce for the access of the counter variable) allows us to ensure that only one thread
at a time is executing a particular block of code. We can use it to fix our “danger” program:

pthread nodanger

We declare a mutex like any other shared variable. It is of type pthread mutex_t. Four func-
tions are used:

e pthread mutex_init — Initialize the mutex and set it to the “unlocked” state.

e pthread mutex_lock — Request the lock on the mutex. If the mutex is unlocked, the
calling thread acquires the lock and proceeds. Otherwise, the thread is blocked until the
thread that previously locked the mutex unlocks it and the calling thread obtains the lock.

e pthread mutex_unlock — Unlock the mutex. If any other threads are blocked on this
mutex in a call to pthread mutex_lock, one of them obtains the lock and can proceed
pastits pthread mutex_lock call.

e pthread mutex_destroy — Destroy the mutex (clean up memory).

A few things to consider about this:

Why isn’t the access to the mutex a problem? Isn’t it just a shared variable itself? — Yes, it’s
a shared variable, but access to it is only through the pthread API. Techniques that are discussed
in detail in an operating systems course are used to ensure that access to the mutex itself does not
cause a race condition.

Doesn’t that lock/unlock have a significant cost? — Let’s see. We can time the programs we’ve
been looking at:

pthread_danger_timed

pthread nodanger_timed



CSIS 335 Parallel Processing and High Performance Computing Fall 2021

Try these out. What are the running times of each version? Perhaps the cost is too much if we’re
going to lock and unlock that much. Maybe we shouldn’t do so much locking and unlocking. In
this case, we’re pretty much just going to lock again as soon as we can jump back around through
the for loop again.

This is a good example of the parallel overhead we mentioned earlier when talking about the
limitations on efficiency and scalability.

Here’s an alternative:
pthread_.nodanger_coarse

In this case, the coarse-grained locking (one thread gets and holds the lock for a long time) should
improve the performance significantly. How fast does it run now? But at what cost? We’ve
completely serialized the computation! Only one thread can actually be doing something at a time,
so we can’t take advantage of multiple processors. If the “computation” was something more
significant, we would need to be more careful about the granularity of the locking.

Barrier Synchronization with pthreads

As we have seen with MPI and the MPI_Barrier function, parallel programs often need to have
their cooperating tasks synchronize at a given execution point.

The idea is straightforward, but it’s a bit different than the MPI approach.

Declare a structure of type pthread barrier_t to manage the barrier.
pthread_barrier_t barrier;

e Initialize the barrier:

pthread_barrier_init (&barrier, NULL, num_threads);

Here, the third parameter indicates the number of threads that need to enter the barrier before
all threads are released to continue execution.

e To use the barrier, all threads must call:
pthread_barrier_wait (&barrier);
All threads that call this function will remain in the function until the total number of threads

that were specified in the pthread barrier_init call have entered the barrier, at which
time all threads will be released to continue, and the barrier is reset.

e Destroy the barrier when it is no longer needed:

pthread_barrier_destroy (&barrier);



