
Computer Science 335
Parallel Processing and HPC
Siena College
Fall 2021

Topic Notes: OpenMP

We have worked with two of the major paradigms for parallel computing so far: distributed mem-
ory with message passing among cooperating processes (MPI) and shared memory with cooperat-
ing threads (pthreads).

We will continue with the latter model, but look at how a smart compiler can help us out.

As pthreads programmers, we saw how it is our responsibility to decide when to create threads,
decide which memory should be shared among threads either by declaring variables globally or
passing pointers through the parameter to pthread create. When variables are shared, it
is our responsibility to ensure safe concurrent access by using mutexes or other synchronization
constructs.

But a compiler should be able to do a little of this work for us by converting some higher level
constructs into appropriate thread calls and mutex locks.

Parallelizing compilers can do some parallelization completely automatically, just by analyzing
the code to determine which operations could be done in parallel and creating threads complete
those operations concurrently. This is a wonderful thing – no extra work for us as programmers! –
but there are significant limitations on what can be done fully automatically. Doesn’t always work,
and it may not choose to parallelize the way we would like.

However, by giving the compiler some hints about what specifically in our code we would like to
have parallelized and how, this compiler-directed parallelism approach can be very effective and
relatively convenient for programmers.

To this end, a standard set of compiler directives and library functions called OpenMP have been
developed to allow programmers to specify parallelism. The OpenMP standard has been imple-
mented in many compilers, including the version of gcc we have on noreaster. So let’s check it
out.

As always, we start with a “Hello, world” program:

https://github.com/SienaCSISParallelProcessing/openmp-hello

Things to note about the OpenMP hello world:

• We include omp.h, the OpenMP header file.
• We have some odd syntax just inside of main() that starts a parallel block:

#pragma omp parallel private(num_threads, thread_num)

It is a preprocessor directive, so the initial pass of the C compiler will replace this with some
code to start up a number of tasks.

CSIS 335 Parallel Processing and High Performance Computing Fall 2021

It means the block that follows is a parallel block which should give private copies to each
task of the variables num threads and thread num.
Note the seemlingly extraneous curly braces following the #pragma. They define the extent
of the parallel block.
• Two self-explanatory query functions are called inside the parallel block:

• omp get thread num()
• omp get num threads()

• To compile this with modern versions of gcc, we need to add the flag -fopenmp. Different
flags are likely needed for other compilers.

Question 1:
Clone the respository on noreaster and Stampede2 and run the program on each. How many
threads are created? Why? (4 points)

To request a specific number of threads to be created, we set the environment variable OMP NUM THREADS
to the number of threads we want. The system will only start a number of threads up to the number
of available processors, by default.

If your shell is bash, the following command would set the environment variable to request 8
threads when running OpenMP:

export OMP_NUM_THREADS=8

Question 2:
Try this on both noreaster and Stampede2, and paste your output from both. (4 points)

For a more interesting example, we revisit the matrix-matrix multiply problem. These programs
are in this repository:

https://github.com/SienaCSISParallelProcessing/openmp-matmult

Aside: the programs in this repository introduce the idea of a common Makefile that is included
by other Makefiles to reduce duplication, and to make it simpler if we wanted to run on a
different system or use a different compiler that would require a change to the CC entry. This way,
we can make the change in Makefile.common in the root directory of the repository and it
will take effect in all of the subdirectories that have their own Makefiles that just include the
common one.

The first we will look at is an incredibly simple OpenMP parallelization in the simple directory
of the repository. Again, we include omp.h but the only other change from a straightforward serial
version is the

#pragma omp parallel for

2

CSIS 335 Parallel Processing and High Performance Computing Fall 2021

which tells OpenMP to parallelize the upcoming for loop.

• Setting the maximum number of threads (OMP NUM THREADS environment variable or the
omp set num threads() function requests a certain number of threads. You are not
guaranteed to get that many.

• When a thread reaches a #pragma omp parallel directive, it creates a team of threads
and becomes the master of the team. The master is a member of that team and has thread
number 0 within that team.

• Starting from the beginning of this parallel region, the code is duplicated and all threads will
execute that code.

• There is an implied barrier at the end of a parallel section. Only the master thread continues
execution past this point.

Question 3:
Run on noreaster with 1, 2, 4, 8, 16, 32 and 64 threads and report the timings. Use a bash
for loop like the one below. (3 points)

To run the program with these numbers of threads, we can do it very simply with this bash for
loop:

for nt in 1 2 4 8 16 32 64; do
> export OMP_NUM_THREADS=$nt
> echo "Run with $nt threads:"
> ./matmult_openmp
> done

Note that the > that you see at the start of all but the first line will be printed by the shell as a
prompt to continue the incomplete command line.

Question 4:
Does this program scale well up to the number of processors in the system? (2 points)

Given what you likely found in answering the questions above, and given how simple it was to
achieve this parallelization with the single #pragma that was added to the serial code, there’s not
much reason to do more. We don’t necessarily know exactly how the compiler and the OpenMP
run-time system achieved the parallelization, but when it works so well, we probably don’t really
care either.

Nevertheless, we will look at how we can take more control over the parallelization. This makes
the code more reminiscent of what we did with pthreads.

First, let’s look at an explicit domain decomposition, in the explicit directory.

Things to note:

3

CSIS 335 Parallel Processing and High Performance Computing Fall 2021

• The simple thread creation and destruction, calling worker()
• The worker has a bunch of local variables, all of which are private to the calling thread
• The computation of the row range for each thread, based on num threads and thread num

Question 5:
Which variant of explicit domain decomposition is used here, block or interleaved? (2 points)

Question 6:
Run some instances of the explicit domain decomposition version. How do the run times
compare with the simple version? (2 points)

Question 7:
How would you modify this example to use the other variant (block or interleaved)? (3
points)

Next, we can look at the bag of tasks approach, in the bagoftasks directory.

Things to note:

• We have no worker function here – the code to be executed in parallel by the threads is
defined by the block inside the { ... } pair following the #pragma omp parallel
directive.
• The shared and private clauses tell OpenMP which variables that we use inside the

multithreaded block should be shared or private to each thread.
• The critical section for the concurrent access to next avail task is taken care of by

the #pragma omp critical(mutex) directives. By naming the critical sections with
the name “mutex” they are essentially the same critical section (as both deal with the same
variable). The name “mutex” here is just a name – it could be anything. This replaces all
the declarations, initialization, locking and unlocking, and destruction of the mutex in the
pthread version.

Question 8:
Run some instances of the bag of tasks version. How do the run times compare with the
previous versions? (2 points)

More OpenMP parallel directive clauses
A parallel OpenMP directive can take a number of clauses to define how variables are to be
treated.

We will look at some of these in the repository:

https://github.com/SienaCSISParallelProcessing/openmp-directives

4

CSIS 335 Parallel Processing and High Performance Computing Fall 2021

• private(variables): indicate that the variables in the list are to be private to each
thread created.

Any previous value is not seen by the threads, and that value is still there when the parallel
block ends.

An example of this is in the private directory.

• shared(variables): indicate that the variables in the list are to be shared among all
threads created.

Any previous value is seen by all threads, and any changes made by threads will persist when
the parallel block ends.

An example of this is in the shared directory.

• firstprivate(variables): Give the copies of the variables within each thread the
initial value which is the the value the variable had outside the parallel block.

• lastprivate(variables): Take the values of the variables in the “last” thread (for a
parallel for loop, or parallel sections) and store that in the variable outside the parallel block.

• reduction(op:variable): Perform a reduction on the variable and store the reduced
value in the variable when the parallel block finishes.

An example of this is in the reduction directory.

Question 9:
What is the MPI analog of this reduction? (3 points)

Back in the openmp-matmult repository, the explicit2 directory shows some of these
directives applied to the matrix-matrix multiplication example.

Other parallel directives
There are several other directives worth looking at a bit:

• sections:

Define sections of code (that aren’t a loop) that can be executed concurrently. An overly sim-
plistic example is in the sections directory of the openmp-directives repository.

Each defined section is a block that can be assigned to a thread.

This is useful when we have different tasks to assign to each thread created.

• single:

Used within a parallel block, this specifies that the block inside the single should be
executed by exactly one thread.

5

CSIS 335 Parallel Processing and High Performance Computing Fall 2021

• master:

This is a lot like single, but we are guaranteed that the master thread does the execution.

• critical:

We’ve seen this – it defines a critical section.

• barrier:

Used within a parallel block, this causes the threads to synchronize at this point. This could
be used, for example, to make sure that the threads all complete some preliminary computa-
tion before moving on to their next step.

• atomic:

Force a simple statement that modifies a single variable to be atomic. It is essentially a
critical section, but since it is more restrictive, the compiler may choose more efficient tech-
niques.

Yet another matrix-matrix multiply example that uses some of these is in the explicit3 direc-
tory.

Question 10:
For each OpenMP directive in this example, give a brief description of its purpose. (5 points)

Some Familiar Examples
OpenMP parallelizations of closest pairs and Conway’s game of life are in

https://github.com/SienaCSISParallelProcessing/openmp-closestpairs

and

https://github.com/SienaCSISParallelProcessing/openmp-life

For the closest pairs when breaking up the work by parallelizing within each graph (the byvertex
implementation), there are two modes implemented: “fine” and “coarse”. One updates the closest
pair after each distance calculation, the other only when the thread has completed its portion of the
work.

Question 11:
Run some comparisons of these two modes on various graphs and numbers of threads. De-
scribe what you find and why this occurs. (5 points)

For the Game of Life, the parallelization is almost embarrassingly simple with OpenMP. There is
just the addition of the omp.h header file and a single #pragma omp directive! It’s a compli-
cated one, including private and shared clauses, as well as three reduction clauses.

6

CSIS 335 Parallel Processing and High Performance Computing Fall 2021

Question 12:
Time some runs of this program using a 1000× 1000 grid and 10,000 iterations and describe
your findings in terms of scalability of this parallelization. (5 points)

7

