
Adaptive Local Re�nement

with Octree Load�Balancing

for the Parallel Solution of

Three�Dimensional Conservation Laws

J� E� Flaherty� R� M� Loy� M� S� Shephard�

B� K� Szymanski� J� D� Teresco� and L� H� Ziantz

Scienti�c Computation Research Center

Rensselaer Polytechnic Institute

Troy� New York �������	
�� USA

Abstract

Conservation laws are solved by a local Galerkin �nite element procedure with adap�

tive space�time mesh re�nement and explicit time integration� The Courant stability

condition is used to select smaller time steps on smaller elements of the mesh� thereby

greatly increasing e�ciency relative to methods having a single global time step� Pro�

cessor load imbalances� introduced at adaptive enrichment steps� are corrected by using

traversals of an octree representing a spatial decomposition of the domain� To accom�

modate the variable time steps� octree partitioning is extended to use weights derived

from element size� Partition boundary smoothing reduces the communications volume

of partitioning procedures for a modest cost� Computational results comparing paral�

lel octree and inertial partitioning procedures are presented for the three�dimensional

Euler equations of compressible �ow solved on an IBM SP� computer�

� Introduction

Adaptive �nite element methods that automatically re�ne or coarsen meshes �h�re�nement�

and�or vary the order of accuracy of a method �p�re�nement� o�er greater reliability� ro�

bustness� and e�ciency than traditional numerical approaches for solving partial di�eren�

tial equations� Like adaptivity� parallel computation makes it possible to solve previously

intractable problems� With problems continuing to increase in complexity through the in�

clusion of more realistic e�ects in models� it seems advantageous to unite adaptivity and

parallelism to achieve the highest gains in e�ciency� Adaptivity on parallel computers� how�

ever� introduces complications that do not arise with simpler solution strategies� Adaptive

algorithms that utilize unstructured meshes 	
� �� ��� ��� �
� make the task of balancing






processor computational load more di�cult than with uniform structures� Furthermore� a

balanced loading will become unbalanced as degrees of freedom are introduced or removed

by adaptive h� or p�re�nement�

Adaptive h�re�nement introduces variation in element size in order to concentrate com�

putational e�ort in speci�c parts of the domain� However� the maximum globally stable time

step depends on the size of the smallest element of the mesh� Therefore� an unintended side

e�ect of h�re�nement is a reduction of computational e�ciency on larger elements� In order

to increase e�ciency� temporal adaptivity has been applied to overlapping two�dimensional

uniform 	�� �� �� 
�� and unstructured 	��� meshes� In Section �� we introduce an explicit

Local Re�nement Method �LRM� for the solution of time�dependent conservation laws on

three�dimensional unstructured meshes� It permits time steps on elements to be proportional

to their size� Larger elements take larger time steps� so work is concentrated on the smaller

ones� Although this method complicates load balancing� it leads to a large improvement in

overall e�ciency�

Poor partitioning of data across the processors of a parallel computer leads to high

communication costs� Several static partitioning algorithms have been developed 	
� 
��

���� however� these may be ine�cient in an adaptive computational environment� Parallel

Sort Inertial Recursive Bisection �PSIRB� 	��� performs recursive bisections of domains

in directions normal to their principal axes of inertia� A parallel sort enables its parallel

execution� however� it is still costly relative to solution time� This has led to the use of

iterative dynamic load balancing techniques that incrementally migrate data from heavily to

lightly loaded processors 	�� �� 

� 
�� 
�� ��� ��� 
�� 

�� These methods provide inexpensive

balancings� but may not reduce communication costs�

Octree decomposition is a successful strategy for generating three�dimensional unstruc�

tured meshes 	���� We use a hierarchical representation of �nite element meshes that is

appropriate for h� or p�re�nement� A Parallel Mesh Database 	�
� ��� provides operators

to create and manipulate distributed mesh data� and a parallel octree library supports the

creation and distribution of octree structures� We describe a dynamic partitioning tech�

nique that exploits the properties of octree�structured meshes� Since such trees are easily

constructed from arbitrary meshes� the procedure is independent of octree mesh generation�

Partitioning may be done serially �Section 
� or in parallel �Section �� 	
��� In either case�

it is inexpensive� hence� it may be used with adaptive procedures� Partitioning requires tree

�



traversals that �i� calculate the processing costs of subtrees and �ii� form the partitions�

Weighting factors proportional to element size may be employed with octree partitioning to

help balance the load of LRMs�

Partitions often have uneven boundaries with elements penetrating into or protruding

from neighboring partitions� which increase communication costs� In Section �� we describe a

partition boundary smoothing operation which is used to reduce the number of faces lying on

partition boundaries� The resulting partitions have approximately the same communications

volume as other more expensive strategies 	��� ����

Using an IBM SP� computer� we apply the LRM and the parallel octree�based partition�

ing technique to three�dimensional compressible �ow problems involving the Euler equations�

Results are presented in Section � and are discussed in Section ��

� The Discontinuous Galerkin Method

We consider three�dimensional conservation laws of the form

ut�x� t� �
�X

i��

fi�x� t�u�xi
� �� x � �� t � �� �
a�

with initial conditions

u�x� �� � u��x�� x � � � ��� �
b�

and appropriate well�posed boundary conditions� For the Euler equations �Section ���

the vector u speci�es the �uid�s density� momentum components� and energy� The sub�

scripts t and xi� i � 
� �� �� denote partial di�erentiation with respect to time and the

spatial coordinates� Finite di�erence schemes for �
�� such as the Total Variation Dimin�

ishing �TVD� 	
�� 

� and Essentially Non�Oscillatory �ENO� 	��� methods� usually achieve

high�order accuracy by using a computational stencil that enlarges with order� A wide

stencil makes the methods di�cult to implement on unstructured meshes and limits e��

cient implementation on parallel computers� Finite element methods� however� have stencils

that are invariant with method order� allowing them to model problems with complicated

geometries more easily and to be e�ciently parallelized�

We discretize �
� using a discontinuous Galerkin �nite element method 	�� 
�� 
��� Thus�

we partition the domain � into tetrahedral elements �j � j � 
� �� � � � � J� multiply �
a� by a

test function v � L���j�� integrate the result on �j � and use the Divergence Theorem to

�



obtain

Z
�j

vTut d� �

�X
i��

Z
�j

vTxi
fi�u� d� �

�X
i��

Z
��j

vTfi�u�ni d� � �� t � �� ���

where n � 	n�� n�� n��
T is the unit outward normal to ��j � Approximating u�x� t� on �j by

a pth�degree polynomial Uj�x� t� � Sj � L���j�� and testing against all functions V � Sj

yields the ordinary di�erential system

Z
�j

VT�Uj�t d� �

�X
i��

Z
�j

VT
xi
fi�Uj� d� ��a�

�

�X
i��

Z
��j

VTfi�Uj�ni d� � �� t � �� j � 
� �� � � � � J�

Initial conditions are determined by local L� projection as

Z
�j

VT�Uj � u�� d� � �� t � �� �V � Sj � j � 
� �� � � � � J� ��b�

Results of Section � use piecewise constant �p��� approximations and explicit Euler inte�

gration� however� p�re�nement may be incorporated 	
���

The normal component of the �ux

fn�u� �

�X
i��

fi�u�ni �
�

remains unspeci�ed on ��j since the approximate solution is discontinuous there� We

specify it using a �numerical �ux� function h�U�
j �U

�

j � dependent on solution states U
�
j

and U�j on the inside and outside� respectively� of ��j � Several numerical �ux functions are

possible 	
�� ���� we use van Leer�s �ux vector splitting 	
�� 
�� ����

� The Local Re�nement Method

Our LRM selects spatially�dependent time steps based upon the Courant stability condition

for explicit time integration� Thus� in a given time period� a smaller number of larger time

steps will be taken on large elements� and the opposite will occur on the small elements�

We illustrate the procedure in Figure � for a group of adjacent �one�dimensional� elements

�A�F�� The solution is periodically synchronized to calculate error estimates or indicators�

This �goal time� to which we wish to advance the solution is labeled G and is typically

determined to be a small multiple of the smallest time step on any element of the mesh�






D E

x

G

B CA F

t

�a�

A B C D E F

G

t

x
�b�

A B C D E F

G

t

x
�c�

Figure 
� The Local Re�nement Method� The set of one�dimensional elements A�F choose
time steps according to their stability criteria� �a� The elements exchange information with
their neighbors �or evaluate boundary conditions� and advance by a single time step� �b�
Elements C and D receive interpolated data from B and E� respectively� and advance a
second time step� �c� The process is repeated until all elements have reached the goal time
G�

�



The time step for �j is determined from the Courant condition as

�tj � �
rj
vj
� � � 
� ���

where rj is the radius of �j �s inscribed sphere and vj is the maximum signal speed on

�j � For the Euler equations� vj is the sum of the �uid�s speed and the sound speed� The

parameter � is introduced to maintain stability in areas of mesh gradation� We empirically

chose � � ����� but a more thorough analysis is necessary�

All elements may advance by their initial time steps �Figure �a� because spatially ad�

jacent information needed to compute numerical �uxes is available from either neighboring

elements or the prescribed boundary conditions�

After this time step �Figure �b�� only elements C and D are able to take another step�

The other elements have either reached the goal time �A and F� or lack the necessary

boundary �uxes to progress �B and E�� Element C may get �ux data from its neighbor D

directly and from B by using linear interpolation in time� Element D does likewise�

After several time steps� elements B�E have the necessary data and all may step to reach

the goal G �Figure �c�� Output or error estimation at G is performed using interpolation

to time G�

The six elements shown in Figure � have been advanced to time G using four rounds of

stepping� Only 

 element time steps are necessary as compared to the �
 steps that would

have been required had all elements taken the largest globally stable time step of elements

C and D�

Temporal interpolation requires storage for solution data at the previous and current

times� Additional space may be required so that the solution may be synchronized and

interpolated to a common time for checkpointing or outputing� The interval between syn�

chronization times is referred to as a major step� Each major step is composed of several

smaller steps� each of which performs a single time step on elements that have the neces�

sary data from their neighbors� These elements are determined by traversing the mesh� but

using the octree connectivity might be more e�cient� At the beginning of a major step� the

software advances G by a multiple of the smallest stable time step on any element of the

mesh� An element�s time step may straddle the goal time� but it may not take another step

after passing G� Thus� a synchronization time is reached�

In principle� elements may take any stable time step� however� allowing arbitrary time

steps is not e�cient� Neighboring elements tend to be similar in size and� hence� use simi�

�



lar time steps� However� small di�erences in element sizes and shapes could lead to minor

di�erences in time steps� This� in turn� leads to time stepping of isolated elements� causing

additional �ux evaluations and complex interpolations� This problem can easily be solved

by rounding time steps down to the next lower �fractional� power of two� Direct bitwise

manipulation is used for e�ciency� Thus� neighboring similar�sized elements advance to�

gether as a group� Fluxes computed on faces interior to the group are used twice� once for

each element� halving the work relative to computation with isolated elements� Since �ux

calculations are typically the most expensive part of the integration� this savings outweighs

any possible losses due to using reduced time steps� Choosing time steps that are fractional

powers of two also helps to organize the computation 	����

��� Error Control

Error control is accomplished through backtracking� Time steps are either accepted or re�

jected based on whether or not elemental error indicators exceed a prescribed tolerance�

Rejected time steps are repeated subsequent to adaptive space�time h�re�nement and rebal�

ancing� Coarsening is essential to keep mesh sizes manageable as �ne�scaled structures move

through the domain� Upon h�re�nement� the solution is interpolated to the new mesh� and

a new time step is attempted� At t � �� the initial conditions are used rather than solution

interpolation to reduce di�usion�

Error indicators based on jumps or gradients of the density� energy� pressure� or Mach

number across a face are used to control adaptive h�re�nement for the Euler equations�

These face�based indicators may be used directly or scaled by face area or inter�element

distance� If desired� they may be combined to form element�based indicators� Experience

suggests that a density gradient scaled by element volume is most informative� and this

indicator was used for the problem presented in Section �� However� discretization error

estimates 	�� 

� 
�� must be developed for compressible �ow applications�

The rejection threshold is selected so that accepted steps provide acceptable solution

resolution� Re�nement and coarsening thresholds� respectively� are the error indicator val�

ues above and below which an element will be scheduled for re�nement or coarsening� The

coarsening threshold should be set well below the rejection threshold� The re�nement thresh�

old should also be set below the rejection threshold to allow re�nement of elements that

have indicators near the rejection threshold� thereby decreasing the likelihood of subsequent

�



rejected time steps�

Without an error estimate� threshold selection cannot be fully automatic and problem

independent� An error histogram can aid in the selection of re�nement and coarsening

thresholds� Using the histogram� the system can monitor the percentages of elements whose

error values fall into prescribed ranges and which are marked for re�nement or coarsening�

This information is used to select appropriate thresholds� In addition� to avoid over�owing

available memory� the re�nement threshold may be automatically adjusted based on an

estimate of the number of elements that would be created during re�nement�

The LRM complicates error control� Spatial gradients� used as error indicators� are

available only when elements are at the same time� Therefore� error evaluation is only done

at the end of a major step� If the error is unacceptable� the solution is rolled back to the

beginning of the major step� h�re�nement is performed� and the process repeated�

��� h�Re�nement

Mesh re�nement and coarsening utilize edge�based error indicators to determine where to

perform enrichment 	�
� ���� An element may be subdivided isotropically or anisotropically

depending on the number of its edges selected for re�nement� Forty�two templates are

employed to accomplish this e�ciently� Interprocessor communication is required to update

shared vertices� edges� and faces� however� element migration is not necessary�

Coarsening is performed when a group of elements all have edges that are so marked�

Convex polyhedra of such elements containing a central vertex are identi�ed� The interior

vertex and interior edges of a polyhedron are removed� and the polyhedron is discretized

without the interior vertex to form fewer elements� Coarsening requires that the entire

polyhedron of elements lie on the same processor� so element migration may be required if

the mesh near an interprocessor boundary is marked for coarsening�

We assign error indicators and solution values to the vertices of the mesh� The solution

and error at a given vertex are assigned the volume�weighted average of the piecewise�

constant element solutions and errors containing that vertex� Edges are marked for en�

richment based on their vertex error values� During re�nement� newly created vertices

along bisected edges receive interpolated solution values from the original vertices� Dur�

ing coarsening some vertices may simply be removed� and edges rearranged� After the

enrichment procedure� elements average their four vertex solutions to restore the original

�



element�oriented solution� To reduce di�usion� this process is avoided� where possible� by

allowing newly created elements to inherit solution values from the previous elements occu�

pying their space�

� Octree Partitioning

An octree�based mesh generator 	��� recursively subdivides an embedding of the problem

domain in a cubic universe into eight octants wherever more resolution is required� Octant

subdivision is initially based on geometric features of the domain� but solution�based criteria

are introduced during adaptive h�re�nement� Finite element meshes of tetrahedral elements

are generated from the octree by subdividing terminal octants� For meshes generated by

other procedures� an element may be associated with the octant that contains its centroid�

Octant subdivision would ensure that octants contain no more than a maximum allowable

number of elements�

The initial mesh and associated octree are loaded onto one processor� A depth��rst

traversal of the octree is made to determine all subtree costs� For simple partitioning� the

cost is the number of elements in the subtree� With p�re�nement� this can be generalized to

a function of the total number of degrees of freedom associated with a subtree� For a LRM�

elemental costs are the inverse of element size to re�ect the increased cost of time stepping

smaller elements more frequently than larger ones� Alternatively� if the octree were sorted

according to element size� costs would correspond to tree depth�

The second phase of the algorithm performs another traversal of the octree to accumulate

octants into successive partitions� Since the total cost of the octree and the number of

partitions �processors� are known� the optimal cost per partition is also known� Beginning

at the root� tree nodes are visited in depth��rst order and are added to the current partition

if the cost of the subtree it roots does not exceed the optimal amount� If the subtree

cost exceeds the partition size� the traversal recursively descends the tree and continues�

Terminal octants are not split� thus� if a terminal octant over�lls a partition� a decision

must be made whether to add it or to close the current partition� leaving it slightly un�lled�

and start work on the next partition� This decision is based on the relative level of imbalance

and the cumulative cost of previously closed partitions to avoid a very large �nal partition�

�



��� Distributed Octree Data Structures

Once the initial tree is partitioned� subtrees are distributed across the processors by message

passing� The distributed octree is still de�ned by octants with parent and child links�

however� some links are o��processor� In the design of the parallel octree library� all parent

and child queries return a pointer to a structure in the local processor�s memory 	���� This

is queried to determine if an object is local or not� If it is local� it is processed in the

normal fashion� If not� the processor number and remote address are available� By using

this design instead of directly storing processor number and remote address for all links�

storage for local links is the same as the serial case� However� remote links require one level

of indirection and storage of the intermediate structure� Since most links will be local� there

is an overall space savings 	����

A generalized concept of an octree root must be adopted with a distributed octree struc�

ture� An octant�s parent may not exist on the local processor� and� in this case� we call

the octant a local root� A parent query still returns a pointer to a structure� however� it

contains information about the parent�s processor� address� bounding box� and level in the

global octree� Storing this information locally enables complex queries on octants in the sub�

tree to be performed via local tree traversals� For example� in the serial case� the bounding

coordinates of an octant usually require a traversal to the root� The bounding coordinates

of the root and the path from it to the octant uniquely determine the octant�s coordinates�

Inter�processor communication needed for the traversal to the root of a distributed tree is

avoided by storing bounding information with each local root� thus� truncating the search

on the local processor� Each processor maintains a list of local roots� All octants on a

processor may be reached by traversing the subtrees rooted by the octants in the local root

list�

A simple tree having root A appears in Figure 
�
a� Its data structure including bounding

box information is stored in �A� In Figure 
�
b� the tree has been distributed across three

processors� The dotted circles indicate remote references� Only the remote location is stored

in these cases� All data associated with a node is stored on its assigned processor� Each

processor has a local root list denoted by LR� and each local root has a data structure

storing its bounding box and tree level information�


�



B D E

E

LR

LR

A

C

Processor 0

LR C

F

A C

D F

Processor 1

Processor 2

G

FED

A

E

G

B C

FD

A

�a� �b�

Figure �� Parallel tree construction� �a� entire tree and �b� tree distributed across three
processors�







��� Octree Updating

After mesh enrichment� the octree and its element relationships must be updated� It might

be most e�cient to update the element�octant associations at the time the elements are

created or deleted� however� performing the operations in a post�processing stage does not

introduce a large overhead and is more general since it allows mesh re�nement to be inde�

pendent of balancing�

We assume elements created in the mesh re�nement stage lack an octree association�

Since a newly created element lies within its parent� it may simply inherit the octant as�

sociation of the parent� If this information is not available from the re�nement procedure�

the element may be inserted into the octree in time proportional to the depth of the local

octree� which is O�log n�� where n is the number of elements on the processor�

Elements resulting from mesh coarsening must also be assigned an octant� When the

convex polyhedron used to coarsen is completely internal to the local processor�s spatial

domain� octree insertion is straightforward� However� the situation is more complex when

the coarsening procedure has to import elements from other processors to form a convex

polyhedron on one processor� The polyhedron occupies space corresponding to terminal

octants on at least one other processor� therefore� the coarsened mesh occupies this space

as well� Some of the new elements do not belong to any octant on the local processor� and

must be migrated to the processor containing their octant� Since some of these elements lie

on the processor�s spatial boundary� the destination processor may be determined by mesh

connectivity�

After mesh re�nement� a traversal of the octree is made to determine if the octree needs

to be extended or pruned� Crowded leaf octants are subdivided by distributing elements to

o�spring of the octant according to their positions� If necessary� this may be done recursively

so that all octants have less than a proscribed number of elements�

Conversely� subtrees having too few elements are pruned to coarsen the octree� Elements

are accumulated to their parent octant�s parent� and the leaf octants are deleted� This may

also be repeated� If an octant is a candidate for coarsening� but has one or more o��processor

sub�octants� then the octant is left untouched� Pruning the octree reduces storage use but

has no e�ect on the e�ciency of the partitioning algorithm� Empty subtrees will always be

skipped in the truncated partitioning traversal� and sparse subtrees will be be skipped with

high probability� Therefore� there is no incentive to incur interprocessor communication to


�



accomplish the pruning�

Comprised of local operations only� the octree re�nement and pruning traversal takes

O�Nmax�� where Nmax is the maximum number of octants on a processor�

The thresholds for octant subdivision and coarsening determine the granularity of ad�

ditions and deletions to a partition when using octree partitioning� and should be chosen

accordingly� Currently� no more than 
� and no fewer than 
� elements are allowed per oc�

tant� Depending on the number and position of elements within an octant� the criterion for

coarsening may be met after re�nement� In this case� a tie is broken in favor of re�nement�

� Parallel Octree Partitioning

The serial octree partitioning algorithm may be extended to operate in parallel� and we refer

to this algorithm as OCTPART�

When dynamic partitioning is needed� each processor computes costs for each locally

rooted subtree using traversals within its domain� The subtrees are sorted to be in depth�

�rst order in a global traversal� This step requires no interprocessor communication� An

inexpensive parallel pre�x operation is performed on the processor cost totals to obtain

a global cost structure� This information enables a processor to determine its local tree

traversal position in the global traversal�

As with the serial procedure� each processor traverses its subtrees to create partitions� A

processor determines its initial partition index using the total cost of processors preceding

it� Starting with this pre�x cost� each processor traverses its subtrees accumulating the

cost of visited nodes� Partitions end near cost multiples of C�P � where C is the total cost

and P is the number of processors� Exceeding a multiple of C�P during the traversal is

analogous to exceeding the optimal partition size in the serial case� and the same criteria is

used to determine where to end partitions� In contrast to the serial algorithm� a processor

must begin its traversal with a speci�ed partition� In serial� there is the option to include

a small additional load in a partition rather than beginning precisely at a multiple of C�P �

In practice� this di�erence is negligible�

When all processors �nish their traversals� each subtree and its associated data is as�

signed to a partition and is migrated to that location if necessary� Migration may be done

using global communication� however� on some computers� it is more e�cient to move data


�



via simultaneous processor shift operations� This linear communication pattern is possible

due to the unidimensionality of the partitioning traversal�

� Partition Smoothing

Application of the octree�based partitioning method to octree�generated meshes yields com�

munications volumes similar to recursive spectral bisection 	
��� However� since mesh re�ne�

ment and coarsening are independent of the octree� elements are not necessarily aligned with

octant boundaries� Thus� choosing partition boundaries based on octants yields partitions

with bumpy surfaces� which increase communication costs� This e�ect may be reduced

by smoothing the partition boundaries 	��� ���� To do this� each processor traverses its

boundary looking for elements that satisfy the following criteria�

�i� Four faces adjacent to four other processors� This is an isolated element that is migrated

to any processor sharing a face� The donating processor�s boundary is reduced by four

faces� and the receiving processor has a net gain of three faces� This case may occur

where several processor domains meet�

�ii� Four faces adjacent to one other processor� Typically� this case occurs when the ele�

ment�s centroid lies on the local processor� but its faces touch only elements on adjacent

processors� The element is migrated to the other processor to eliminate four faces from

the donating processor and four faces from the receiving processor�s boundary�

�iii� Three faces adjacent to one other processor� The element forms a spike into a pocket

on the other processor� The element is migrated to the processor� reducing both its

boundary and that of the receiver by two faces�

�iv� Two faces adjacent to one other processor for each of a pair of elements with a com�

mon face� The pair forms a spike into a pocket on the other processor� The pair is

migrated to the other processor� reducing both the donating and receiving processors�

boundaries by two faces�

�v� Three faces adjacent to two other processors� The element is migrated to the processor

sharing the highest number of faces� The donating processor�s boundary is reduced

by two faces� and the receiving processor�s boundary size is unchanged�







Pattern detection and migration for each case must be performed in a separate phase

to avoid con�icting migrations which would degrade boundary smoothness� Furthermore�

within a given case� operations between two or more processors must be colored to avoid

simultaneous exchanges resulting in diminished gain or even loss� For example� spikes on

one side of a boundary may exchange sides with spikes on the other side� resulting in a larger

boundary than before the exchange� The coloring may be done using subphases where a

processor �rst sends elements to higher�numbered processors and then sends them to lower�

numbered ones� When three processors are involved� three subphases are necessary based

on their relative order�

Minyard et al� 	��� perform processor boundary smoothing by a similar iterative method�

They identify elements on interprocessor boundaries whose vertices are all shared by two

processors� These correspond to cases �ii�� �iii�� and �v�� Patterns involving more than

two processors �case �i�� are not considered� After all elements are marked� half of the

marked elements along a boundary are migrated to one side� and half to the other� While

this strategy will maintain a better load balance� it misses some opportunities to reduce

interprocessor communication� For example� if case �iv� were encountered in the mesh� this

strategy could result in no net improvement of the interprocessor boundaries�

Pattern recognition for each phase of the smoothing requires computational time pro�

portional to the number of elements on a processor�s boundary� It requires communication

time proportional to the number of elements selected for smoothing migration� The actual

amount varies with the initial partition quality� In practice� the number of boundary faces

on a processor may be reduced from ���� �

� Results

Consider the three�dimensional unsteady compressible �ow in a cylinder containing a cylin�

drical vent� This problem was motivated by �ow studies in perforated muzzle brakes for

large calibre guns 	
��� We match �ow conditions to those of shock tube studies of Dillon 	
��

and Nagamatsu et al� 	���� Our focus is on the quasi�steady �ow that exists behind the

contact surface for a short time� thus� we initiate the problem by rupturing a hypothetical

diaphragm between the two cylinders� Using symmetry� the �ow may be solved in one half

of the domain bounded by a plane through the vent� The initial mesh contains ������ tetra�


�



hedral elements� The larger cylinder �the shock tube� initially contains air moving at Mach


��� while the smaller cylinder �the vent� is quiet� A Mach 
��� �ow is prescribed at the

tube�s inlet and outlet� The walls of the cylinders are given re�ected boundary conditions�

and a far �eld condition is applied at the vent exit� All results were obtained using 
�

processors of an IBM SP� computer�

Figure 
� illustrates the Mach number with velocity vectors at solution time t � ���

using global time stepping� A strong shock has formed near the downwind vent�shock tube

interface� and a portion of the �ow in the vent has accelerated to supersonic conditions�

The re�ection of the �ow from the downwind vent face produces a component of the �ow at

the vent exit in a direction opposite to the principal �ow direction� In a cannon� this helps

to reduce recoil� These �ow features compare favorably with experimental and numerical

results of Nagamatsu et al� 	���� The superior numerical properties of the LRM 	��� allowed

the same solution to be computed with greater accuracy using only � mesh enrichments� as

opposed to the �
 needed with a global time step� A time sequence showing the solution

obtained with the LRM on the left and the corresponding partitionings using OCTPART

on the right is given in Figure 
�� The center image may be compared to the global time

stepping solution of Figure 
��

When a given mesh is partitioned and migrated� the resulting distributed mesh is not

stored in a unique way� Mesh elements� faces� and vertices migrated to a processor are added

to the local data structure�s linked lists in the order that they arrive� Order variations do

not directly a�ect the solution process but they do a�ect mesh enrichment� Enrichment is

performed in the order that elements are encountered in the linked structures� Additionally�

di�erent enrichment operations are performed on partitions in order to reduce unnecessary

data migration� For example� procedures might decline to coarsen a region on an interpro�

cessor boundary� Thus� runs with identical input will lead to slightly di�erent meshes and�

hence� slightly di�erent solutions� To ameliorate such variations� we ran each example �ve

times and noted trends in behavior� However� these variations make comparisons by CPU

times di�cult or impossible�

��� Global vs� Local Re�nement

To advance the perforated tube solution from t � � to ��
� the LRM takes ��
���
 � 
��

element time steps requiring the computation of �������� 
�� �uxes� To advance the com�


�



putation with global time�stepping at the smallest acceptable time step would have required

an estimated 
�����
� 
�	 element time steps and greater than ����
��� 
�	 �ux computa�

tions� This is a factor of 

��� more element time steps and ��
� more �ux evaluations� The

estimate assumes that the same spatial meshes would be used for the two methods� and the

same solution would have been generated�

Figure 

 illustrates the computational gain achieved by using the LRM for the mesh

at t � 
��� in the run of Figure 
�� Shading indicates the total number of local time steps

taken by each element since the last mesh enrichment� Over ���� time steps are taken on the

smallest elements for every one on the largest elements� Small time steps are concentrated

in the shock and expansion regions near the intersection of the two cylinders� The largest

time steps occur in the interior of the main tube�

The LRM rounds time steps down to the nearest power of two� As described� a greater

number of adjacent elements step by the same amount� allowing the computed �ux between

them to be shared� Employing this strategy reduced the number of �uxes computed per

element from ���� to ��
�� The number of faces visited per element time step� a measure of

the overhead involved with �nding candidate elements to step� was reduced from ���������

to �����
����

��� Size�Weighted Balancing

Let the time�step imbalance be the maximum number of elements time stepped on a pro�

cessor relative to the average number stepped on all processors 	
��� Likewise� let the �ux

imbalance be the maximum number of �uxes computed on a processor relative to the average

number computed on all processors� In either case� let the average imbalance at simulation

time t be a weighted average of all imbalances to time t� The weighting is the wall�clock

duration of an imbalance relative to the total wall�clock time of the computation�

As shown in Figure ���� balancing based solely on the number of elements per processor

produces average time�step imbalances of 
����
��� while size�weighted balancing reduced

this to 
��
�
���� Likewise� average �ux imbalances of 
����
��� were reduced to 
�
��
���

by the size�weighted balancing� One of the runs of Figure ��� is shown in more detail in

Figure ���� Size�weighted balancing has a greater variation than the un�weighted balancing�

but its overall performance is better�


�



��� Partition Performance

We compare the performance of PSIRB and OCTPART using the percentage of elements

moved during migration as well as balancing time� Comparison of partition quality follows

in Section ��
�

The percentages of elements moved by PSIRB and OCTPART during balancing are

shown in Figure ��� for �ve runs of the perforated tube problem� Rebalance zero corresponds

to the initial partitioning� thus� both techniques show a high percentage of data movement�

Rebalancings 
� 
� �� � � �� 
� are performed after mesh coarsening while �� �� �� � � �� 

 follow

mesh re�nement� The other rebalancing indices follow �snapping�� which is an operation to

assure mesh validity with respect to geometry that generally involves element migration 	����

OCTPART tends to move fewer elements than PSIRB after the coarsening and snapping

phases� and is generally comparable to or slightly better than PSIRB after re�nement�

Figure ��� underscores these trends by plotting relative percent di�erences in data migration

between the two techniques� IfmPSIRB andmOCTPART represent the percentages of elements

moved by PSIRB and OCTPART during a given rebalancing� the relative percent di�erence

between the two methods is

mdi
 �
mPSIRB �mOCTPART

mPSIRB

� 
��� ���

Thus� a positive value indicates that OCTPART is outperforming PSIRB� The mean relative

percent improvement in data movement of OCTPART compared to PSIRB is approximately

�
 for each of the �ve runs�

Figure � shows a worst�case behavior of PSIRB� The mesh on the left was re�ned adap�

tively to produce the mesh on the right� The re�nement has shifted the principal axis of

inertia in such a way that 
�� of the elements are moved from their prior processor loca�

tion by PSIRB� This illustrates one of the dangers of using a static partitioning procedure

for transient problems�

In Figure ���� we show the relative percent di�erences in balancing time between PSIRB

and OCTPART computed as in ��� for a sequence of rebalancings� While PSIRB has an

advantage relative to OCTPART at the beginning of the computation� OCTPART consis�

tently begins to outperform PSIRB as the simulation progresses� The mean relative percent

improvement of OCTPART compared to PSIRB for each run is 
���� �


�



��� Partition Smoothing

We evaluate the performance of partition smoothing by its e�ect on the cost of interprocessor

communication� We appraise this cost using a global surface index �GSI� 	
�� which is the

percentage of all element faces on interprocessor boundaries� For the discontinuous Galerkin

method used herein� the GSI is equivalent to the number of edge �cuts� in the communication

graph induced by a partitioning 	��� �
� ��� normalized by the total number of these edges�

Normalization makes the metric independent of problem size�

The e�ect of partition boundary smoothing on the GSI is shown for a run of 
� rebalanc�

ings for OCTPART and PSIRB in Figure ���� One iteration of smoothing reduces the global

surface index by 
���
�� percentage points for OCTPART and ����
�
 points for PSIRB� Re�

peating the smoothing yields an additional improvement of ��
���� points for OCTPART and

������� points for PSIRB� Total relative improvement of GSI after two smoothing iterations

was ����� for OCTPART and 
���� for PSIRB� More than two smoothing iterations

did not provide a signi�cant improvement� and� in most cases� one smoothing appears to be

su�cient�

The relative partition quality of OCTPART and PSIRB can be seen in the lower curves

of the Figure ���� While OCTPART outperforms PSIRB in data movement and run time

�Section ����� PSIRB tends to produce lower GSIs�

� Discussion

The local re�nement method greatly reduces computational costs of transient solutions

with no loss of accuracy relative to global time step approaches� While it does introduce

additional storage and synchronization requirements� the demonstrated factor of at least �

in �ux computation and at least 

 in time step computation more than justi�es these costs�

Balancing the load of a LRM is a di�cult problem� The introduction of sized�weighted

octant partitioning reduces imbalance signi�cantly relative to simple element weighting� In

our example� the time step imbalance improved from approximately 
�
� to 
��
 and �ux

imbalance improved from approximately 
�

 to 
��� with size weighting� Further study on

balancing LRMs is warranted� especially when p�re�nement is introduced�

Octree�based partitioning is an e�ective and e�cient partitioning strategy that may ei�

ther be used in conjunction with octree mesh generation 	��� or on its own� It provides a


�



suitable means of controlling communication volumes based solely on a geometric decompo�

sition of space� The amount of data movement performed by OCTPART is less than that

of PSIRB by approximately �
 � OCTPART is also faster than PSIRB by 
���� �

At present� there is� however� no guarantee that partitions produced by OCTPART �and

PSIRB� are connected� thus� there may be �islands� of elements assigned to a partition

that are disconnected from other elements in the partition� Estimates on the examples

presented indicate that there are less than ten isolated islands of mesh entities per processor�

Nevertheless� these islands may lead to suboptimal surface index values and can adversely

a�ect the convergence rate of iterative solution techniques� The spatial nature of the octree

decomposition promotes element contiguity� and� perhaps� di�erent traversals of the tree

might reduce the number of disconnected elements within a partition�

Partition boundary smoothing reduced the GSI of a partitioned mesh by at least �� 

for OCTPART and 
� for PSIRB� Additional smoothing opportunities may provide some

further improvement� When used with OCTPART� smoothing introduces a small ine��

ciency due to restrictions in the current mesh tools� An octant is uniquely de�ned on one

processor� Smoothing is done independently of the octree� and migrated regions have no

local octant association� Before further operations modify the octree� data that is on a

processor di�erent than its assigned octant is migrated back to the processor containing

that octant� This will be corrected by having mesh modi�cation or migration operations

invoke a �callback� mechanism to allow the octree structure to be aware of any changes

to the mesh or its distribution� In a non�octree�derived mesh� elements are not necessarily

aligned with octants� When an element spans two or more octants� its octant assignment

is somewhat arbitrary� and we decide based on the region�s centroid� Smoothing tends to

shift this assignment among the octants overlapping the region� A callback would make the

reassignment permanent and eliminate the need to resmooth should an octant fall on an

interprocessor boundary� New elements created by the re�nement of such an element may

not all intersect the original element�s octant� In that case� a callback would assign the

element to the correct �neighboring� octant�

Exact timings of algorithms are di�cult to obtain for several reasons� The communi�

cation medium and� to some extent� the processors are shared resources� thus� there are

expected variations in communication and computation times between runs� More impor�

tantly� the mesh adaptivity is� by design� nondeterministic� The result of re�nement and

��



coarsening is dependent upon traversal order as well as the partitioning of the mesh at the

time of adaptivity� Thus� two runs having the same input parameters will likely have slightly

di�erent meshes� While each mesh is within the accuracy constraints� direct time compar�

isons are inconclusive� We are adding capabilities to force determinism for comparison

purposes� but not all sources of nondeterminism can be avoided without severe performance

penalties that would render the comparisons meaningless�

An e�cient adaptive and parallel procedure should spend most of its time performing

computation as opposed to performing mesh enrichment and rebalancing� Without exact

timings� we provide estimates of the portion of time spent on each phase of the computation

for the series of ten runs used to obtain the present results� Our �ndings indicate that 

�


� of the time is spent on mesh enrichment� 
��

 of the time is spent on rebalancing and

partition smoothing� and �
��� of the time is spent doing computation� The remaining

��

 is spent on tasks such as loading meshes� writing checkpoint and solution �les� and

monitoring performance� The computational fraction is low relative to that expected on

longer production runs� The present data contains the �rst ��� re�nement steps� Typically�

these early mesh enrichments result in the most drastic mesh changes since adaptivity

captures solution features not not present in the initial solution and mesh� Subsequent

enrichments result in fewer changes� and� therefore� a faster enrichment and rebalancing

process� with more steps of computation between enrichment steps�

All load balancing� migration� enrichment� and solution procedures have been designed to

scale� Nevertheless� a detailed study to verify this must be conducted� Barring such an inves�

tigation� we note that results of a two�dimensional system similar to our three�dimensional

system produced excellent scalability 	��� Scalability studies of three�dimensional steady

�ows using PSIRB with enrichment and migration strategies similar to those reported here

were also excellent 	���� Finally� preliminary runs of the present system on a larger number

of processors produced encouraging results�

Incremental migration strategies for use with adaptivity are being developed 	
�� 
���

If cost or locality of data movement is more important than global load balance� another

approach with OCTPART may be taken� The processors may shift partition boundaries�

thus� migrating subtrees from a processor pi to its neighbors pi�� and pi��� If� for example�

processor pi seeks to transfer load r to pi��� it may simply traverse its subtrees accumulating

their loads until it reaches r� The nodes visited comprise a subtree which may be transferred

�




to pi�� and which is contiguous in the traversal with the subtrees in pi��� Likewise� if pi

desires to transfer work to pi��� the reverse traversal could remove a subtree from the trailing

part of pi�

	 Acknowledgements

This research was partially supported by the U�S� Army Research O�ce through Con�
tract Number DAAH�
����
����
� the National Science Foundation though grant number
CCR�����
�
� a DARPA Research Assistantship in Parallel Processing administered by the
Institute for Advanced Computer Studies� University of Maryland� and a fellowship from
the Northrop Grumman Corporate Research Center�

References

	
� S� Adjerid� J� E� Flaherty� P� Moore� and Y� Wang� High�order adaptive methods for
parabolic systems� Physica�D� ����
!


� 
����

	�� C� G� Armstrong� ed� Advances in Engng� Software� vol� 
������ Computational Me�
chanics Publ�� Southhampton� 
��
�

	�� M� J� Berger� On conservation at grid interfaces� SIAM J� Numer� Anal� �
�������!��
�

����

	
� M� J� Berger and S� H� Bokhari� A partitioning strategy for nonuniform problems on
multiprocessors� IEEE Trans� Computers� ���������!���� 
����

	�� M� J� Berger and J� Oliger� Adaptive mesh re�nement for hyperbolic partial di�erential
equations� J� Comput� Phys�� ���
�
!�
�� 
��
�

	�� K� S� Bey� A� Patra� and J� T� Oden� hp�version discontinuous Galerkin methods
for hyperbolic conservation laws� a parallel adaptive strategy� Int� J� Numer� Meth�

Engng�� �����������!����� 
����

	�� R� Biswas� Parallel and Adaptive Methods for Hyperbolic Partial Di�erential Systems�
PhD thesis� Computer Science Dept�� Rensselaer Polytechnic Institutue� Troy� 
��
�

	�� R� Biswas� K� D� Devine� and J� E� Flaherty� Parallel� adaptive �nite element methods
for conservation laws� Appl� Numer� Math�� 

����!���� 
��
�

	�� C� L� Bottasso� H� L� de Cougny� M� Dindar� J� E� Flaherty� C� "Ozturan� Z� Rusak�
and M� S� Shephard� Compressible aerodynamics using a parallel adaptive time�
discontinuous Galerkin least�squares �nite element method� In Proc� ��th AIAA Applied

Aerodynamics Conference� no� �
�
���� Colorado Springs� 
��
�

	
�� C� L� Bottasso� J� E� Flaherty� C� "Ozturan� M� S� Shephard� B� K� Szymanski� J� D�
Teresco� and L� H� Ziantz� The quality of partitions produced by an iterative load bal�
ancer� In B� K� Szymanski and B� Sinharoy� eds�� Proc� Third Workshop on Languages�

Compilers� and Runtime Systems� Troy� pp� ���!���� 
����

��



	

� B� Cockburn and P��A� Gremaud� Error estimates for �nite element methods for scalar
conservation laws� SIAM J� Numer� Anal� ������!��
� 
����

	
�� B� Cockburn� S��Y� Lin� and C��W� Shu� TVB Runge�Kutta local projection discontinu�
ous Galerkin �nite element method for conservation laws III� One�Dimensional systems�
J� Comput� Phys�� �
���!

�� 
����

	
�� B� Cockburn and C��W� Shu� TVB Runge�Kutta local projection discontinuous Galerkin
�nite element method for conservation laws II� General framework� Math� Comp��
���


!
��� 
����

	

� G� Cybenko� Dynamic load balancing for distributed memory multiprocessors� Journal
of Parallel and Distributed Computing� �����!��
� 
����

	
�� H� L� de Cougny� K� D� Devine� J� E� Flaherty� R� M� Loy� C� "Ozturan� and M� S� Shep�
hard� Load balancing for the parallel adaptive solution of partial di�erential equations�
Appl� Numer� Math�� 
��
��!
��� 
��
�

	
�� K� D� Devine and J� E� Flaherty� Parallel adaptive hp�re�nement techniques for con�
servation laws� Appl� Numer� Math�� ������!���� 
����

	
�� K� D� Devine� J� E� Flaherty� R� Loy� and S� Wheat� Parallel partitioning strategies
for the adaptive solution of conservation laws� In I� Babu#ska� J� E� Flaherty� W� D�
Henshaw� J� E� Hopcroft� J� E� Oliger� and T� Tezduyar� eds�� Modeling� Mesh Gener�

ation� and Adaptive Numerical Methods for Partial Di�erential Equations� vol� ��� pp�
�
�!�
�� Springer�Verlag� Berlin�Heidelberg� 
����

	
�� R� E� Dillon Jr� A parametric study of perforated muzzle brakes� ARDC Technical
Report ARLCB�TR��
�
�� Benet Weapons Laboratory� Watervliet� 
��
�

	
�� C� Farhat and M� Lesoinne� Automatic partitioning of unstructured meshes for the
parallel solution of problems in computational mechanics� Int� J� Numer� Meth� Engng��
����
�!��
� 
����

	��� C� Farhat� N� Maman� and G� W� Brown� Mesh partitioning for implicit computations
via iterative domain decomposition� impact and optimization of the subdomain aspect
ratio� Int� J� Numer� Meth� Engng�� ������!
���� 
����

	�
� J� E� Flaherty� R� M� Loy� C� "Ozturan� M� S� Shephard� B� K� Szymanski� J� D� Teresco�
and L� H� Ziantz� Parallel structures and dynamic load balancing for adaptive �nite ele�
ment computation� SCOREC Report ���
���� Scienti�c Computation Research Center�
Rensselaer Polytechnic Institute� Troy� 
����

	��� P� L� George� Automatic Mesh Generation� John Wiley and Sons� Ltd�� Chichester�

��
�

	��� B� Hendrickson and R� Leland� The Chaco user�s guide� version 
��� Technical Report
SAND�������� Sandia National Laboratories� Albuquerque� 
����

	�
� B� Hendrickson and R� Leland� Multidimensional spectral load balancing� Technical
Report SAND������
� Sandia National Laboratories� Albuquerque� 
����

��



	��� Z� Johan� K� Mathur� and S� L� Johnsson� An e�cient communication strategy for
�nite element methods on the Connection Machine CM�� system� Technical Report
���� Thinking Machines Corporation� 
����

	��� W� L� Kleb and J� T� Batina� Temporal adaptive Euler�Navier�Stokes algorithm in�
volving unstructured dynamic meshes� AIAA J�� ������
���!
���� 
����

	��� E� Leiss and H� Reddy� Distributed load balancing� design and performance analysis�
W� M� Kuck Research Computation Laboratory� �����!���� 
����

	��� R� A� Ludwig� J� E� Flaherty� F� Guerinoni� P� L� Baehmann� and M� S� Shephard�
Adaptive solutions of the Euler equations using �nite quadtree and octree grids� Com�
puters and Structures� ������!���� 
����

	��� T� Minyard� Y� Kallinderis� and K� Schulz� Parallel load balancing for dynamic execu�
tion environments� In Proc� ��th Aerospace Sciences Meeting and Exhibit� Reno� no�
�������� 
����

	��� H� T� Nagamatsu� K� Y� Choi� R� E� Du�y� and G� C� Carofano� An experimental and
numerical study of the �ow through a vent hole in a perforated muzzle brake� ARDEC
Technical Report ARCCB�TR����
�� Benet Weapons Laboratory� Watervliet� 
����

	�
� L� Oliker� R� Biswas� and R� C� Strawn� Parallel implementaion of an adaptive scheme
for �D unstructured grids on the SP�� In Proc� �rd International Workshop on Parallel

Algorithms for Irregularly Structured Problems� Santa Barbara� 
����

	��� A� Pothen� H� Simon� and K��P� Liou� Partitioning sparse matrices with eigenvectors
of graphs� SIAM J� Mat� Anal� Appl�� 

����
��!
��� 
����

	��� M� S� Shephard� Approaches to the automatic generation and control of �nite element
meshes� Applied Mechanics Review� 

�
��
��!
��� 
����

	�
� M� S� Shephard� Update to� Approaches to the automatic generation and control of
�nite element meshes� Applied Mechanics Reviews� 
��
�� part ���S�!S

� 
����

	��� M� S� Shephard� J� E� Flaherty� H� L� de Cougny� C� "Ozturan� C� L� Bottasso� and
M� W� Beall� Parallel automated adaptive procedures for unstructured meshes� In
Parallel Computing in CFD� no� R����� pp� ��
!��
�� Agard� Neuilly�Sur�Seine� 
����

	��� M� S� Shephard and M� K� Georges� Automatic three�dimensional mesh generation by
the Finite Octree technique� Int� J� Numer� Meth� Engng�� ���
�����!�
�� 
��
�

	��� C��W� Shu and S� Osher� E�cient implementation of essentially non�oscillatory shock�
capturing schemes� II� J� Comput� Phys�� ���
!�
� 
����

	��� H� D� Simon� Partitioning of unstructured problems for parallel processing� Comp� Sys�
Engng�� ��
��!

�� 
��
�

	��� M� L� Simone� M� S� Shephard� J� E� Flaherty� and R� M� Loy� A distributed octree and
neighbor��nding algorithms for parallel mesh generation� Technical Report ���
����
Rensselaer Polytechnic Institute� Scienti�c Computation Research Center� Troy� 
����

	
�� P� K� Sweby� High resolution schemes using �ux limiters for hyperbolic conservation
laws� SIAM J� Numer� Anal� �
����!
�

� 
��
�

�




	

� B� Van Leer� Towards the ultimate conservative di�erence scheme� IV� A new approach
to numerical convection� J� Comput� Phys�� ������!���� 
����

	
�� B� Van Leer� Flux vector splitting for the Euler equations� ICASE Report ������
ICASE� NASA Langley Research Center� Hampton� 
����

	
�� V� Vidwans� Y� Kallinderis� and V� Venkatakrishnan� Parallel dynamic load�balancing
algorithm for three�dimensional adaptive unstructured grids� AIAA J�� ������
��!����

��
�

	

� S� Wheat� K� Devine� and A� MacCabe� Experience with automatic� dynamic load
balancing and adaptive �nite element computation� In H� El�Rewini and B� Shriver�
editors� Proc� ��th Hawaii International Conference on System Sciences� Kihei� pp�

��!
��� 
��
�

��



1.1

1.2

1.3

1.4

1.5

1.6

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

A
ve

ra
ge

 F
lu

x 
Lo

ad
 Im

ba
la

nc
e

Simulation Time

No weighting
Size weighting

1.1

1.2

1.3

1.4

1.5

1.6

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

A
ve

ra
ge

 T
im

es
te

p 
Lo

ad
 Im

ba
la

nc
e

Simulation Time

No weighting
Size weighting

Figure �� Average �ux �top� and time�step �bottom� load imbalances for a sequence of �ve
runs with and without size weighting�

��



1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

F
lu

x 
Lo

ad
 Im

ba
la

nc
e

Simulation Time

No weighting
Size weighting

No weighting, average
Size weighting, average

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

T
im

es
te

p 
Lo

ad
 Im

ba
la

nc
e

Simulation Time

No weighting
Size weighting

No weighting, average
Size weighting, average

Figure 
� Flux �top� and time�step �bottom� load imbalances during a representative run as
shown in Figure ���� Scatter data show the actual load imbalance as a function of simulation
time� The curves show average load imbalance�

��



0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14

G
lo

ba
l p

er
ce

nt
 m

ig
ra

te
d

Rebalance number

PSIRB
OCTPART

Figure �� Percentages of elements moved during balancing by PSIRB and OCTPART for a
sequence of �ve runs�

-40

-20

0

20

40

60

80

100

0 2 4 6 8 10 12 14

R
el

at
iv

e 
P

er
ce

nt
 D

iff
er

en
ce

Rebalance Number

Figure �� Relative percent di�erences mdi
 in data migration of OCTPART compared to
PSIRB for a sequence of �ve runs�

��



-80

-60

-40

-20

0

20

40

60

80

100

0 2 4 6 8 10 12 14

R
el

at
iv

e 
P

er
ce

nt
 D

iff
er

en
ce

Rebalance Number

Figure �� Relative percent di�erences in PSIRB and OCTPART repartitioning times for a
sequence of �ve runs�

��



3

4

5

6

7

8

9

0 2 4 6 8 10 12 14

G
S

I

Rebalance number

No smoothing
Smoothing 1 iteration

Smoothing 2 iterations

3

4

5

6

7

8

9

0 2 4 6 8 10 12 14

G
S

I

Rebalance number

No smoothing
Smoothing 1 iteration

Smoothing 2 iterations

Figure �� Global surface indices �GSIs� before and after smoothing for OCTPART �top�
and PSIRB �bottom��

��



�a� �b�

Figure �� Partitioning of consecutive meshes with PSIRB� Minor mesh modi�cations to �a�
have shifted the principal axis of inertia� resulting in nearly a total redistribution of data �b��

Figure 
�� Projection of the Mach num�
ber and velocity vectors onto the surface
of a perforated cylinder using global time
stepping at t � ����

Figure 

� Number of local time steps
taken on the mesh at t � 
��� of the run
in Figure 
��

�




Figure 
�� Projections of the Mach number and velocity vectors �left� and mesh and parti�
tioning �right� onto the surfaces of a perforated cylinder at times � �top�� ��� �center�� and
��� �bottom��

��


