
Computer Science 335
Parallel Processing and HPC
Siena College
Fall 2021

Topic Notes: Introduction and Overview

Welcome to CSIS 335!

Why Parallel Computing?
The basic idea of parallel computing is simple enough – when one computer isn’t powerful enough
to solve the problem you want to solve in the timeframe in which you want that solution, use more
than one!

Before we start to think about how to use parallelism on a computer, let’s think about a parallel
approach to solving a “real-world” problem.

• Adding up a collection of numbers (e.g., sum of an array)

We’ll experiment with this one in class.

• Taking a census of Loudonville.

One person doing this would visit each house, count the people, and ask whatever questions
are supposed to be asked. This person would keep running counts. At the end, this person
has gathered everything.

If there are two people, they can work concurrently. Each visits some houses, and they need
to “report in” along the way or at the end to combine their information. But how to split up
the work?

– Each person could do what the individual was originally doing, but would check to
make sure each house along the way had not yet been counted.

– Each person could start at the town hall, get an address that has not yet been visited,
go visit it, then go back to the town hall to report the result and get another address to
visit. Someone at town hall keeps track of the cumulative totals. This is nice because
neither person will be left without work to do until the whole thing is done. This is the
master-worker or bag of tasks method of breaking up the work.

– The town could be split up beforehand. Each could get a randomly selected collection
of addresses to visit. Maybe one person takes all houses with even street numbers
and the other all houses with odd street numbers. Or perhaps one person would take
everything west of Route 9 and the other everything east of Route 9. The choice of how
to divide up the town may have a big effect on the total cost. There could be excessive
travel if one person walks right past a house that has not yet been visited. Also, one
person could finish completely while the other still has a lot of work to do. This is a
domain decomposition approach.



CSIS 335 Parallel Processing and High Performance Computing Fall 2021

• Grading a stack of exams. Suppose each has several questions. Again, assume two graders
to start.

– Each person could take half of the stack. Simple enough. But we still have the potential
of one person finishing before the other.

– Each person could take a paper from the “ungraded” stack, grade it, then put it into the
“graded” stack.

– Perhaps it makes more sense to have each person grade half of the questions instead of
half of the exams, maybe because it would be unfair to have the same question graded
by different people. Here, we could use variations on the approaches above. Each takes
half the stack, grades his own questions, then they swap stacks.

– Or we form a pipeline, where each exam goes from one grader to the next to the finished
pile. Some time is needed to start up the pipeline and drain it out, especially if we add
more graders. These models could be applied to the census example, if different census
takers each went to every house to ask different questions.

– Suppose we also add in a “grade totaler and recorder” person. Does that make any of
the approaches better or worse?

• Adding two 1,000,000 × 1,000,000 matrices.

– Each matrix entry in the sum can be computed independently, so we can break this up
any way we like. Could use the bag of tasks approach, though a domain decomposition
would probably make more sense. Depending on how many processes we have, we
might break it down by individual entries, or maybe by rows or columns.

In each of these cases, we have taken what we might normally think of as a sequential process,
and taken advantage of the availability of concurrent processing to make use of multiple workers
(cores or processing units).

Parallelism adds complexity (as we will see in great detail), so why bother?

• we want to solve the same problem but in a shorter time than possible on one processor –
goal: speedup

– think: a weather model that takes 2 days to produce tomorrow’s weather forecast isn’t
so good

• we want to solve larger problems than can currently be solved at all on a single processor –
goal: scale-up

– think: again back to the weather model, the choice might be the level of resolution,
what level of detail can we compute, and more paralellism could mean more accurate
forecasts for more places in time for them to be meaningful

2



CSIS 335 Parallel Processing and High Performance Computing Fall 2021

• some algorithms are more naturally expressed or organized concurrently

• and now: that’s where performance gains come from in modern processors!

See the chart on page 28 of Saving the Future of Moore’s Law

Image from Intel Core Duo Processor product brief.

Some Basics
Sequential Program: sequence of actions that produce a result (statements + variables), called a
process, task, or thread (of control). The state of the program is determined by the code, data, and
a single program counter.

Concurrent Program: two or more processes that work together. Big difference: multiple program
counters.

To cooperate, the processes need communication and synchronization, which can be achieved
through shared variables, or message passing.

We will consider all of these

Hardware to run concurrent processes

• single processor – logical concurrency (see Operating System course)

• multiprocessor – shared memory

• multicomputer – separate memories

3



CSIS 335 Parallel Processing and High Performance Computing Fall 2021

• network – slower communication

Computers may be classified as:

• single instruction, single data (SISD) – one processor doing one thing at a time to one piece
of data at a time.

• single instruction, multiple data (SIMD) – multiple processors all doing the same thing at
the same time, but operating on different data. Also known as: vector computers. Program
operates in “lock step” on each processor.

• multiple instruction, multiple data (MIMD) – multiple processors each doing their own thing.

• single program, multiple data (SPMD) – not really a classification of the computer, but of a
model used to program a MIMD computer. Multiple processors run the same program, but
do not operate in lock step. Also known as the interacting peers model. This is the model
we will use most in this class.

Some examples:

• SISD: Pre-“multi-core” desktops and laptops.

• SIMD: graphics cards that apply a single operation to an array of data points at the same
time.

• MIMD: desktops/laptops/mobile devices with multiprocessors or multi-core chips – each
processor can be executing any instruction and operating on any data.

• MIMD: noreaster.teresco.org: Dual Intel Xeon Processor E5-2630 v4 (10 Cores,
2.2GHz, 3.1GHz Turbo)

• MIMD: ASCI Red, Sandia National Labs: 4600+ nodes, each with 2 Intel Pentium II Xeon
processors, first TeraOp machine in 1997.

• MIMD: Stampede2: Cluster with 5940 nodes and a total of 368,280 cores, Intel Xeon Phi
Knights Landing, Intel Xeon Skylake, peak performance 12800 TFlops, installed 2017

See https://www.top500.org/.

Moral: from the your phones and tablets to desktop and laptop computers to the most powerful
supercomputers, it’s a world of parallel processing out there!

How to Achieve Parallelism

• We need to determine where concurrency is possible, then partition the work accordingly.
There are two major approaches to the partitioning problem.

4



CSIS 335 Parallel Processing and High Performance Computing Fall 2021

– task parallelism: different tasks are partitioned among the processing units

– data parallelism: processing units all do the same tasks, but on different parts of the
data

• This is easiest if a compiler can do this for you – take your sequential program and extract
the concurrency automatically. This is sometimes possible, especially with fixed-size array
computations.

• If the compiler can’t do it, it is possible to give “hints” to the compiler to tell it what is safe
to parallelize.

• But often, the parallelization must be done explicitly: the programmer has to create the
threads or processes, assign work to them, and manage necessary communication.

We will consider all of these types of parallelism here.

5


