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An adaptive technique for a partial di�erential system automat�
ically adjusts a computational mesh or varies the order of a nu�
merical procedure to obtain a solution satisfying prescribed accu�
racy criteria in an optimal fashion� We describe data structures
for distributed storage of �nite element mesh data as well as soft�
ware for mesh adaptation� load balancing� and solving compressible
�ow problems� Processor load imbalances are introduced at adap�
tive enrichment steps during the course of a parallel computation�
To correct this� we have developed three dynamic load balancing
procedures based� respectively� on load imbalance trees� moment
of inertia� and octree traversal� Computational results on an IBM
SP� computer are presented for steady and transient solutions of
the three�dimensional Euler equations of compressible �ow�

� Introduction

The �nite element method �FEM� has become a standard analysis tool for
solving partial di�erential equations �PDEs�� Adaptive FEMs have gained
importance because they provide reliability� robustness� and time and space
e�ciency� During the solution process� portions of the discretized domain
are spatially re�ned or coarsened �h�re�nement�� the method order is varied
�p�re�nement�� and�or the mesh is moved to follow evolving phenomena �r�
re�nement�� to concentrate or dilute the computational e�ort in areas needing
more or less resolution 	
���
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Parallel computation is essential for computationally demanding three�dim�
ensional problems however� it introduces complications such as the need
to balance processor loading� coordinate interprocessor communication� and
manage distributed data� The standard methodology for optimizing parallel
FEM programs relies on a static partitioning of the mesh across the cooper�
ating processors� However� with adaptive software� a good initial partition is
not su�cient to assure high performance� Load imbalance caused by adaptive
enrichment necessitates a dynamic partitioning and redistribution of data�

Tools developed at the Scienti�c Computation Research Center �SCOREC� at
Rensselaer to facilitate the development and use of parallel adaptive �nite ele�
ment software are described in Section �� An object�oriented� hierarchical mesh
database is used to store and manipulate mesh data 	��� Meshes are created
by an automatic �nite octree procedure 	���� Parallel extensions to the mesh
database allow operations to be performed on distributed data and provide
for the dynamic migration of �nite elements 	������ Parallel mesh enrichment
routines are used for spatial re�nement and coarsening �h�re�nement� 	����
Such reusable software libraries are essential to provide the ability to solve
diverse problems� each of which presents its own challenges� These tools allow
application software to be written in a uniform way and enable the program�
mer to concentrate on issues speci�c to the problem at hand rather than the
details of the underlying mesh structures or parallelization concerns�

The quality of the data partitioning is an important e�ciency factor �Sec�
tion ��� One measure of partition quality is the percentage of elements which
require access to o��processor data during the computation� On a distributed�
memory parallel computer� poor partition quality results in a higher com�
munication cost during the �nite element solution phase� Static partitioning
methods based on coordinate 	��� inertial 	���� and spectral 	��� bisection are
used to reduce communication cost when distributing initial meshes� A parallel
version of the inertial partitioning method 	��� may also be used for dynamic
rebalancing� However� in an adaptive computation� global partitioning strate�
gies can be costly relative to solution time� Thus� a number of iterative dy�
namic load balancing techniques that incrementally migrate data from heav�
ily to lightly loaded processors have been developed 	����
��
��
���������
��
An iterative method based on load imbalance trees 	������ is available within
our system� While these methods provide inexpensive ways to achieve a bal�
anced computation� they can lead to degradation of partition quality� We
also use an octree�based partitioning� which takes advantage of an underlying
tree structure to achieve balance and to maintain reasonable communication
costs 	
������

Presently� mesh re�nement and coarsening precede a balancing step� Were
we able to predict imbalance prior to re�nement� we could maintain better
performance through the enrichment and subsequent computational steps� A
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strategy for doing this is described in Section ����

Partitions often have jagged boundaries with elements penetrating into or
protruding from neighboring partitions� Such features increase communication
costs� As described in Section ���� interprocessor boundary smoothing may be
used as a post�processing step to improve the quality of any load balancing
procedure 	
���
�����

We solve compressible steady and transient �ow problems on an IBM SP�
computer to demonstrate the capabilities of the parallel adaptive system� A
steady conical �ow �Example 
� Section ���� is used to compare load balancing
procedures� The analysis of a transient shock impacting a cone �Example ��
Section ���� is used to demonstrate the advantages of predictive load balanc�
ing� The solution of a transient �ow in a muzzle brake is shown as Example
� in Section ���� In Section �� we discuss results and present future research
directions�

� SCOREC Mesh Tools

��� SCOREC Mesh Database

The SCOREC Mesh Database �MDB� 	�� provides an object�oriented hierar�
chical representation of a �nite element mesh� It also includes a set of operators
to query and update the mesh data structure� The basic mesh entity hierar�
chy consists of three�dimensional regions� and their bounding faces� edges� and
vertices� with bidirectional links between mesh entities of consecutive order
�Figure 
�� In three�dimensional meshes� regions are used as �nite elements
while faces serve as elements in two�dimensional meshes� Mesh entities are ex�
plicitly classi�ed relative to a geometric model of the problem domain to allow
for the appropriate representation of the geometry as the mesh is enriched�

Edge
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Modeler
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Face
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Fig� �� MDB entity hierarchy� with links to a geometric modeler�
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The full entity hierarchy allows the e�cient deletion and creation of mesh
entities during h�re�nement and simpli�es attachment of degrees of freedom
to the mesh entities during p�re�nement 	���� The database allows for the
fast retrieval of adjacency information� Examples of available data include the
list of faces bounding an element� and the edges sharing a common vertex�
All entities can have attached attributes such as solution and error indicator
data�

��� SCOREC Finite Octree Automatic Mesh Generator

Initial meshes are created using the SCOREC Finite Octree Automatic Mesh

Generator 	���� Beginning with a geometric model of the domain obtained
from CAD software� the mesh generator �rst discretizes the boundary and
then recursively subdivides the domain into cubes called octants to create a
variable level octree� The level of local subdivision is consistent with element
size on the domain boundary� Octants are classi�ed relative to the problem
domain as interior� exterior� or boundary� Exterior octants do not intersect the
domain and receive no further consideration� Interior octants are discretized
using templates� Boundary octants are discretized by face removal procedures
that connect the boundary triangulation to the interior octants�

��� Parallel Mesh Database

A Parallel Mesh Database �PMDB� 	������� which provides operators to create
and manipulate distributed mesh data� is built on top of MDB� Using PMDB�
each processor holds MDB data associated with a subset of the complete
mesh� Entities along partition boundaries are shared by more than one pro�
cessor �Figure ��� and are maintained by a partition boundary data structure�
In three�dimensional distributed meshes� each region is assigned to a unique
processor� but bounding faces� edges� and vertices of regions along an inter�
processor boundary are duplicated on each processor that contains a region
using that entity�

Links to o��processor data copies are stored as processor�address pairs called
uses� Each partition boundary entity keeps a list of its uses� A duplicated par�
tition boundary entity has a unique owning processor that can be determined
by �nding the minimum ordered pair �po�ao� in the list of uses for that entity
using the address as the most signi�cant key� Here po is the id of the owning
processor and ao is the address of the entity on po� This ownership informa�
tion can be used to implement an owner�computes rule 	��� e�g� � during scalar
product computation in an iterative linear solver� Since �po�ao� functions as a
global key for an entity� there is no need to generate and store a separate key
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Fig� �� Two�dimensional example of a distributed mesh� Arrows represent interpro�
cessor pointers between boundary entities� Heavy edges and vertices indicate the
unique owner of each shared boundary entity�

by computing the centroid of the entity 	���� Global key generation can� thus�
be replaced by the incremental and faster process of ownership regeneration
of a�ected partition boundary entities �Section �����

Sets of entities on a partition boundary adjacent to a speci�c processor are
organized as doubly linked lists �Figure ��a�� allowing constant�time inser�
tion and deletion� These can be used to construct lists of partition boundary
entities that are shared among processors� Doubly linked lists are also used
to store the information needed to maintain processor adjacencies based on
various entity connectivities and the number of entities adjacent to the pro�
cessor �Figure ��b��� PMDB provides fast query and update operations on the
boundary structure� For example� a �nite element procedure can obtain scat�
ter�gather maps of data for use in its communication phase� Fast traversal of
entities on interprocessor boundaries is provided by following the interproces�
sor boundary structure lists� All interprocessor communication is done using
the Message Passing Interface �MPI� 	����

��� Mesh Migration

PMDB handles arbitrary multiple migration of elements between processors
�Figure �� to maintain a balanced computation� Any top�level entity can be
marked for migration� although it is frequently the boundary elements that
are migrated� The migration procedure uses an owner�updates rule to collect
and update any modi�cations to links on partition boundaries� As illustrated
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Fig� �� Doubly linked structures of partition boundary entities	 
a� global view and

b� partition boundary view� �E and �V denote lists of all partition boundary edges
and vertices� respectively� Symbols with subscripts indicate lists of entities adjacent
to a particular processor� The circled number two in 
b� corresponds to the small
number two in 
a�� The ordered pairs are processor�address pairs�

in Figure �� mesh migration is done in three main phases� �i� senders migrate
mesh entities to receivers� �ii� senders and receivers send the migrated bound�
ary to the owners� and �iii� owners update the boundary data structures and
notify a�ected processors of the new location of each entity� The processing
done in the �rst stage is proportional to the number of entities being mi�
grated� while the complexity of the second and third stages is proportional to
the number of entities in the boundary of the submesh being migrated� As a
result� if each processor migrates to a small number of processors� such as its
neighbors� the migration will scale with the number of processors 	����

��� SCOREC Mesh Enrichment

The SCOREC mesh enrichment 	��� procedure performs spatial �h�� re�ne�
ment and coarsening in parallel using error indicator information and enrich�
ment threshold values� From this information� mesh edges are marked to be

�



+ +

+
+

(a)

+

+

+

+

(c)

+

+

+

+

(b)

migrated
boundary

processor 0 processor 1

processor 2 processor 3

Fig� � Example of arbitrary multiple migration illustrating the three�stage pro�
cess	 
a� senders migrate mesh entities to receivers� 
b� senders and receivers send
the migrated boundary to the owners� and 
c� owners update the boundary data
structures and notify a�ected processors�

coarsened� re�ned� or unchanged� Mesh enrichment is done in stages following
the order of �i� coarsening� �ii� optimization �optional�� �iii� re�nement� �iv�
optimization �optional�� �v� re�nement vertex snapping� and �vi� optimiza�
tion �optional�� as illustrated on the left of Figure �� Coarsening collapses a
marked edge to one of its end vertices� Regions connected to the collapsed
vertex that cease to exist are deleted to form a polyhedral cavity� and the
faces of the cavity are connected to the target vertex to form new mesh re�
gions� Mesh optimization improves the quality of triangulations with respect
to a given criterion �e�g� � element shape�� Re�nement is performed using sub�
division patterns� First� faces on partition boundaries with marked edges are
triangulated using two�dimensional re�nement templates� Each processor then
independently applies three�dimensional patterns that have been determined
for every con�guration of marked edges �Figure ��� The enrichment process
has an over�re�nement option which reduces element shape degradation at the
expense of creating more elements� In the �nal stage of enrichment� vertices
created by the re�nement process that are classi�ed as belonging to a curved
model boundary must be �snapped� to the appropriate model entity to ensure
mesh validity with respect to the geometry of the problem domain�
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� Partitioning and Load Balancing

The distribution of data across the processors of a parallel computer greatly
a�ects performance� A balance of computational load is necessary to avoid
idle processors� but does not su�ce to ensure e�cient parallel computation�
Research on mesh partitioning to date has focused on minimizing the number
of �cuts� that the subdomains create when the partitioning is viewed as a
communication graph whose vertices represent computation and whose edges
represent data dependencies 	���������� With �nite volume and �nite element
schemes this closely corresponds to the task of minimizing the number of ele�
ment faces on interprocessor boundaries� This metric is an excellent indication
of the amount of local data that must be communicated to perform a com�
putation� especially with higher�order methods where three�dimensional facial
modes increase as the square of the polynomial degree�

We appraise the cost of interprocessor communication by two surface indices
of partition quality 	��� The maximum local surface index �MLSI� measures
the maximum percentage of element faces on the boundary of any processor�
and the global surface index �GSI� measures the percentage of all faces on
interprocessor boundaries� For the discontinuous Galerkin methods used for
the computations of Section �� the GSI is equivalent to the number of edge
�cuts� in the communication graph normalized by the total number of these
edges� Normalization makes the measure independent of problem size� These
surface indices can be thought of as surface�to�volume ratios if the concepts of
surface and volume are expanded beyond conventional notions� With current
technology� message startup is a signi�cant component of communication cost
therefore� interprocessor connectivity �the number of processors with which
each processor must exchange information during the solution phase� is as
signi�cant a factor in performance 	�� as the number of boundary faces�

Three static partitioning procedures are available in PMDB to distribute mesh
data initially� Orthogonal Recursive Bisection �ORB� 	��� also called Recursive

Coordinate Bisection� uses the coordinates of element centroids to partition
the mesh� At each recursive step� the Cartesian coordinate of the longest di�
mension of the domain under consideration is bisected� elements are sorted
according to the bisecting coordinate� and half of the elements are assigned
to each subdomain� Inertial Recursive Bisection �IRB� 	���� proceeds likewise�
but in a direction orthogonal to its principal axis of inertia� Recursive Spec�

tral Bisection �RSB� 	��� is generally considered to be among the best static
mesh partitioning procedures� RSB is costly and may be too expensive for use
in a large�scale three�dimensional adaptive computation� ORB and IRB are
available as initial partitioning methods in PMDB while RSB is available in
Chaco 	��� and other packages�
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A dynamic load balancing scheme that operates on distributed mesh data
is essential for adaptive computation� Multilevel Recursive Spectral Bisection

�MRSB� 	�� has improved the e�ciency of RSB� but its parallelization relies
heavily on a shared memory architecture and is unlikely to be e�cient in a
true message passing environment 	
�� Other enhancements to RSB 	���������
may make it more useful as a dynamic repartitioner� but serious doubts re�
main� Three dynamic load balancing schemes are available for use with PMDB
data structures and mesh migration operators� Iterative Tree Balancing 	������
�ITB� performs repeated local migrations to achieve balance� Parallel Sort In�
ertial Recursive Bisection 	��� �PSIRB� uses IRB with a parallel sort� Octree
Partitioning 	
�� �OCTPART� uses the octree structure underlying the mesh
to achieve load balance�

The measure of imbalance or �cost function� that re�ects the computational
load on each processor is generally chosen as the number of elements on
a processor with h�re�nement� However� heterogeneous costs are necessary
when �i� using p�re�nement or spatially�dependent solution methods� �ii� us�
ing spatially�dependent time steps� �iii� enforcing boundary conditions� and
�iv� using predictive load balancing �Section ����� PMDB provides an element
weighting scheme that can be used to address each of these needs�

��� Iterative Tree Balancing

ITB follows Leiss and Reddy 	���� Wheat 	�
�� and Devine and Flaherty 	
��
in that lightly loaded processors request load from their most heavily loaded
neighbors� However� instead of considering an immediate neighborhood of pro�
cessors� the algorithm views the requests as forming a forest of trees �Fig�
ure �b�� Each tree is then linearized� and a logarithmic�time scan operation
is used to compute load �ows 	��� to determine the amount of data to be mi�
grated �Figure �c�� Layers of elements on interprocessor boundaries are moved
from heavily loaded to lightly loaded processors to achieve balance within each
tree �Figure �� 	���� ITB is �di�usive�� and a heavily loaded processor will dis�
tribute load to several lightly loaded neighbors� ITB may be iterated to achieve
a global balance within a speci�ed tolerance or be set to terminate after a �xed
number of iterations� With low per�iteration costs� ITB can be executed for
a few iterations between substages of operations like mesh enrichment 	�����
without the large time penalty of a global repartitioning�

��� Parallel Sort Inertial Recursive Bisection

Parallel sorting of elemental coordinates in the inertial frame enables IRB to
be used as a dynamic repartitioning procedure called PSIRB� Thus� mesh data
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Fig� �� ITB �slice�by�slice� element selection

can be distributed before the initial PSIRB invocation� A partitioning of the
initial mesh used in Example � �Section ���� distributed with PSIRB is shown
on the left of Figure 
�� This partition has an MLSI of 
���� and a GSI of
�����
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��� Octree Partitioning

Octree�based partitioning 	
�� employs automatic octree generation proce�
dures 	��� and uses tree topology to create a one�dimensional ordering of the
octree nodes� The ordered list of nodes is divided into segments correspond�
ing to nearly equal load� Members of any given segment tend to be spatially
adjacent and� thus� form a good partition� Minyard et al� 	��� also present an
octree�based partitioning procedure that uses orthogonal coordinate bisection�
The use of space��lling curves 	�
� is an alternative that also keeps neighboring
elements of the ordering in close spatial proximity�

Initially� cost metrics of all subtrees of the octree are determined to indicate
loading in speci�c spatial regions� The cost metrics� usually the number of
elements in an octant� may be weighted by polynomial degree or other factors
to indicate heterogeneity� The second phase of the balancing uses the cost
information to construct partitions� Since the total cost is known� the optimal
partition size is also known� Each partition consists of a set of subtrees deter�
mined by a truncated depth��rst traversal beginning at the root �Figure �a��
Subtrees are visited during the traversal and added to a current partition if
they �t �Figure �b�� If a subtree exceeds the optimal size of the current parti�
tion �Figure �c�� a decision must be made as to whether the subtree should be
added� or whether the traversal should examine it further� In the latter case�
the traversal continues with the o�spring of the node� and the subtree may
be divided among two or more partitions �Figure �d�� When the imbalance at
a node is too large to justify inclusion in the current partition and the node
is either terminal or su�ciently deep in the tree� the partition is closed �Fig�
ure �e�� and subsequent nodes are added to the next partition� The process
continues until the traversal is complete �Figure �f��

The decision on whether to add a subtree to a partition or to examine it further
is based on the amount by which the optimal partition size is exceeded� A small
excess may not justify an extensive search and may be used to compensate for
some other partition which is slightly undersized�

After initial mesh partitioning� the tree and mesh data are distributed to the
processors� Tree links may be local or o��processor� allowing each processor
to store part of the octree and its associated mesh� There is no replication of
the octree� Let Nmax be the maximum number of elements on a processor� P
be the number of processors� and N be the number of mesh elements� Then
dynamic rebalancing may be performed in parallel in O�Nmax� time� assuming
Nmax � logP � For a nearly balanced mesh� this approaches O�N�P �� Parti�
tioning time does not grow with P as it would for a recursive algorithm� In
terms of scalability� our algorithm is more advantageous than that of Minyard
et al� 	��� who store the global octree on each processor� This e�ectively pro�
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Fig� �� Depth��rst traversal for partitioning using OCTPART�

duces a procedure having serial complexity since the partitioning is duplicated
on all processors� However� global information located on a single processor
makes possible more informed decisions and may lead to higher quality parti�
tions�

A partitioning of the mesh of Example � �Section ���� onto eight processors
using OCTPART is shown on the right of Figure 
�� This initial partition
has an MLSI of ���� and a GSI of ����� Thus� OCTPART and PSIRB have
comparable GSIs� but OCTPART�s lower MLSI indicates a more uniform par�
titioning in this instance�

��� Predictive Load Balancing

At present� enrichment precedes a full load balancing� although a few ITB
iterations are performed between substages of the enrichment to maintain
some balance �left of Figure ��� However� the work done during the enrich�
ment procedure is not necessarily proportional to the number of elements on
a processor at the start of re�nement� Thus� balancing using a unit load per
element may not be appropriate� We hope to improve this by using the error
indication data to select element weightings and perform load balancing be�
fore the re�nement stage of the enrichment process �right of Figure ��� This
predictive load balancing should reduce imbalance during both the re�nement
stage of enrichment and the subsequent solution phase and result in fewer ele�
ments being migrated� At present� predictive load balancing is performed using
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weighted ITB �WITB� however� any load balancing procedure that recognizes
elemental weights may be substituted� e�g� � OCTPART�

���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������

Mesh Optimization

(ITB load balance)

���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������

���������������������
���������������������
���������������������

���������������������
���������������������
���������������������

���������������������
���������������������
���������������������

���������������������
���������������������
���������������������

���������������������
���������������������
���������������������

Refinement

Mesh Optimization

Mesh Optimization

Refinement Vertex Snapping

Coarsening

(ITB load balance)

(ITB load balance)

(ITB load balance)

(ITB load balance)

(ITB load balance)

��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������

Mesh Optimization

Mesh Optimization

Refinement Vertex Snapping

Coarsening

(ITB load balance)

(ITB load balance)

(ITB load balance)

(ITB load balance)

Refinement

(Weight regions & apply WITB)

Mesh Optimization

(ITB load balance)

Fig� �� Current nonpredictive 
left� and predictive 
right� enrichment procedures�
Shaded portions indicate optional steps�

Weight assignments for h�re�nement are made after edges have been marked
for splitting based on error indicator information and a re�nement threshold
but before the re�nement is actually performed� The weighting is based on
the three�dimensional subdivision patterns used by the re�nement algorithm
�Section ���� as indicated by the parenthetical numbers in Figure �� An ele�
ment is assigned a unit weight if none of its edges are marked� If p�re�nement
were being performed� the number of degrees of freedom associated with each
element would also have to be considered in the weighting�

Using the predictive balancing� a small imbalance may occur in both the re�
�nement and the subsequent numerical computation� Imbalance seen in the
solution phase is a result of the migration of mesh elements that occurs dur�
ing re�nement vertex snapping and mesh optimization� It can also be caused
by the deletion and creation of elements in the optimization stage� A greater
imbalance can occur when over�re�nement �Section ���� is used since more
subdivisions will be performed than predicted by the original edge marking�
Imbalance after predictive balancing may also occur during re�nement if many
elements with large weights come to reside on a few processors while the re�
maining processors have mostly unit weight elements�

Table 
 compares the nonpredictive and predictive enrichment procedures il�
lustrated in Figure � for Example � �Section ����� Tests were run on 
� proces�
sors of an IBM SP� computer� The table shows timings for a sequence of ten
meshes generated during a transient adaptive analysis� The times shown for
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Fig� �� Weights for subdivision patterns and predictive load balancing�

each mesh were averaged over ten runs� The �Size� column gives the number
of elements in each mesh for both balancings� the �Enrich�Bal Time� col�
umn shows the sums of enrichment and balancing times� and the last column
contains sums of enrichment� balancing� and solution times� The last row of
the table gives an average across the ten meshes generated adaptively� There
is approximately a �� percent improvement when comparing sums of balanc�
ing and enrichment times� and a �� percent improvement in the overall times
when using predictive enrichment� In this transient example� the solution and
combined balancing�enrichment times were comparable when solution time
dominates adaptivity� e�g� � in a steady�state problem� gains due to predictive
balancing are smaller�

��� Partition Smoothing

Application of the PSIRB or OCTPART partitioning methods to distribute
mesh data yields reasonable surface indices 	��
��� However� when a general
mesh enrichment procedure is used on an unstructured mesh� the resulting
�nite elements are not usually aligned with partition boundaries� When ele�
ments are assigned to a processor based on their centroid locations� a choice
of partition boundaries based on octants� cut planes� or slices �Figure �� may
yield partitions with jagged edges� Such jagged edges increase communica�
tion costs however� this may be reduced by smoothing the partition bound�
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Table �� Timings of nonpredictive vs� predictive enrichment procedures�

aries 	
���
����� To do this� we let each processor traverse its boundary looking
for elements that satisfy the following criteria�

�i� Four faces adjacent to four other processors� This is an isolated element
that is migrated to any processor sharing a face� The donating processor�s
boundary is reduced by four faces� and the receiving processor has a net
gain of three faces� This case may occur where several processor domains
meet�

�ii� Four faces adjacent to one other processor� Typically� this case occurs
when the element�s centroid lies on the local processor� but its faces touch
only elements on adjacent processors� The element is migrated to the other
processor to eliminate four faces from the donating processor and four faces
from the receiving processor�s boundary�

�iii� Three faces adjacent to one other processor� The element forms a spike
into a pocket on the other processor� The element is migrated to the other
processor� reducing the boundary of each processor by two faces�

�iv� Two faces adjacent to one other processor for each of a pair of elements

with a common face� The pair forms a spike into a pocket on the other
processor� The pair is migrated to the other processor� reducing both the
donating and receiving processors� boundaries by two faces�

�v� Three faces adjacent to two other processors� The element is migrated to
the processor sharing the highest number of faces� The donating processor�s
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boundary is reduced by two faces� and the receiving processor�s boundary
size is unchanged�

Pattern detection and migration for each of these cases must be performed in a
separate phase to avoid con�icting migrations which would degrade boundary
smoothness� Furthermore� within a given case� operations between two or more
processors must be colored to avoid simultaneous exchanges resulting in di�
minished gain or even loss� For example� spikes on one side of a boundary may
exchange sides with spikes on the other side� resulting in a larger boundary
than before the exchange� The coloring may be done using subphases where a
processor �rst sends elements to higher�numbered processors and then sends
them to lower�numbered ones� When three processors are involved� three sub�
phases are necessary based on their relative order�

Minyard et al� 	��� perform processor boundary smoothing by a similar it�
erative method� They identify elements on interprocessor boundaries whose
nodes are all shared by two processors� These correspond to Cases �ii�� �iii��
and �v�� Patterns involving more than two processors �Case �i�� are not con�
sidered� After all elements are marked� half of the marked elements along a
boundary are migrated to one side� and half to the other� While this strategy
will maintain a better load balance� it misses some opportunities to reduce in�
terprocessor communication� For example� if case �iv� were encountered in the
mesh� this strategy could result in no net improvement of the interprocessor
boundaries�

Pattern recognition for each phase of our smoothing algorithm requires time
proportional to the number of elements on a processor�s boundary� Communi�
cation is also bounded by the number of elements on the processor�s boundary
however� in practice� it takes much less time since typically less than 
� of
the boundary quali�es for smoothing migration� In return� a signi�cant drop
in the number of boundary faces may be achieved�

Performance data for this smoothing algorithm is shown in Figure 
�� The
data were collected from a shock tube problem solved in three dimensions on
� and 
� processors using OCTPART for load balancing� At the start of both
runs� the GSI is high because distribution of the small initial mesh results in
each processor having few elements� After time ����� however� adaptive mesh
re�nement has increased the mesh size substantially and the GSI improves�
Over the remainder of the run� one iteration of smoothing reduced the GSI
by 
�� points on � processors and ��� points on 
� processors� In both cases
repeating the smoothing operation yielded an additional improvement of up
to 
 point� Total relative improvement after two smoothing iterations on both
the � and 
� processor cases was 
������ More than two smoothing iterations
did not provide a signi�cant improvement� In general� partition qualities are
better for the � processor case than the 
� because having twice the num�
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ber of elements per processor simpli�es the partitioning problem� Processor
imbalance immediately after partitioning is ���� and is increased by a max�
imum of �� after one iteration of smoothing and a maximum of ���� after
two iterations�
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Fig� ��� Mesh improvements for boundary smoothing�

� Applications

We solve compressible steady �Example 
� Section ���� and transient �Exam�
ples � and �� Sections ��� and ���� �ow problems to demonstrate the capabili�
ties of the parallel adaptive system� Although these are demanding problems�
applications with more complex geometries and loading can be addressed with
the same technique�

��� Parallel Euler Solver

Three�dimensional solutions of the Euler equations were obtained using a spa�
tially discontinuous Galerkin �nite element method 	��
��
�� and explicit time
integration� Steady problems are solved by local time stepping with all el�
ements advancing at their maximum stable timestep as determined by the
Courant condition� Solution residuals are monitored to sense an approach to
steady state� Transient problems are solved with a global step obtained as
the maximum acceptable timestep over all elements according to the Courant
condition�

Explicit� re�ected� and far �eld conditions can be prescribed for all mesh faces
classi�ed as faces of the problem domain� For boundaries where density� pres�
sure� and velocity are speci�ed� a virtual element across the face supplies the
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speci�ed data� Re�ected conditions are imposed by hypothesizing a virtual
element across the boundary face with a mirror image of the element�s data�
At far �eld boundaries� the virtual element has a copy of the element�s data�

Error control is accomplished through backtracking� Time steps are either ac�
cepted or rejected based on whether or not elemental error indicators exceed a
prescribed tolerance� Rejected time steps are repeated subsequent to adaptive
space�time h�re�nement and rebalancing� Coarsening is essential to keep mesh
sizes manageable as �ne�scaled structures move through the domain� Upon
h�re�nement� the solution is interpolated to the new mesh� and a new time
step is attempted�

Error indicators based on jumps or gradients of the density� energy� pressure�
or Mach number across a face control adaptive h�re�nement� These face�based
indicators may be used directly or scaled by either face area or inter�element
distance� If desired� they may be combined to form element�based indicators�
Experience suggests that a density gradient scaled by element volume is most
informative� and this indicator has been used for the problems presented here�
However� true error estimates 	��

�
�� must be developed for compressible
�ow applications�

Time steps are rejected whenever error indicators exceed a rejection threshold�
This threshold should be selected so that accepted steps provide an adequate
solution resolution� Re�nement and coarsening thresholds� respectively� are
the error indicator values above and below which an element will request to
be re�ned or coarsened� Coarsening thresholds for h�adaptivity should be set
such that elements whose error indicator values are well below the rejection
threshold are marked for coarsening� The re�nement threshold should also be
set below the rejection threshold to allow re�nement of elements which are
near the rejection threshold� thereby increasing the likelihood that a large
number of time steps will be accepted before the next rejection�

Without an error estimate� the threshold selection process cannot be fully au�
tomatic and problem independent� An error histogram can aid in the selection
of re�nement and coarsening thresholds� Using the histogram� the system can
monitor the percentages of elements whose error values fall into prescribed
ranges and which are marked for re�nement or coarsening� This information
is used to select appropriate thresholds� In addition� to avoid over�owing avail�
able memory� the re�nement threshold may be automatically adjusted based
on an estimate of the number of elements that would be created during re�
�nement�
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��� Example �	 Steady Conical Flow

Consider the steady �ow at Mach � past a cone having a half�angle of 
�
degrees� This problem has a known analytical solution 	��� that may be used to
appraise accuracy� Using symmetry� we solve this problem in a box surrounding
one quarter of the cone� The initial mesh contains �
���� tetrahedral elements�
The entire domain is initialized to a Mach � parallel �ow toward the cone
base� Re�ected boundary conditions are applied on symmetry planes and on
the cone�s surface� A Mach � �ow is prescribed at the inlet� and far �eld
supersonic conditions are applied at the outlet�

This problem was run on 
� processors of an IBM SP� computer� The initial
mesh was partitioned using IRB� and the partitioning was rebalanced with
PSIRB after each of three adaptive steps taken to reach steady state�

This example was used to compare the performance of the OCTPART and
PSIRB partitioning procedures� Tests were done on � processors of an IBM
SP� computer� Surface indices are averaged over � to � runs� Figure 

 shows
that PSIRB produces partitions which are superior as measured by MLSI
and GSI� However� times to partition and migrate mesh data to achieve load
balance for PSIRB are typically twice that of OCTPART� For problems in
which solution time dominates rebalancing time� the additional cost of PSIRB
may be worthwhile since the improved mesh quality can reduce total solution
time �Section ���
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Fig� ��� Maximum Local 
left� and Global 
right� Surface Indices for ��processor
steady conical �ow runs using the PSIRB and OCTPART partitioning procedures�

��� Example �	 Transient Shock Impacting a Cone

Consider a Mach � shock impacting a cone with a 
��degree half angle from
its side� The domain is a box surrounding the cone with one end at the base of
the cone and the opposite one beyond the tip of the cone� Using symmetry� we
solve for the �ow about one half of the cone with an initial mesh containing
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������ elements� The domain is quiescent initially� and a Mach 
��� �ow behind
the Mach � shock enters the top of the �ow domain� Re�ected conditions are
applied on solid surfaces� planes of symmetry� and on the sides of the problem
domain� Far �eld conditions apply at the bottom face�

This transient �ow problem was solved on 
� processors of an IBM SP� com�
puter� Figure 
� shows the density at global time t � ���� Away from the cone�
the shock travels without appreciable disturbance� but the density increases
signi�cantly as the shock di�racts in regions near the cone� The partitioning
selected by PSIRB at t � ��� is shown in Figure 
��

��� Example �	 Transient Flow in a Muzzle Brake

Consider the three�dimensional unsteady compressible �ow in a cylinder con�
taining a cylindrical vent� This problem was motivated by �ow studies in
perforated muzzle brakes for large calibre guns 	
��� We match �ow conditions
to those of shock tube studies of Dillon 	
�� and Nagamatsu et al� 	���� Our
focus is on the quasisteady �ow that exists behind the contact surface for a
short time� Using symmetry� the �ow may be solved in one half of the domain
bounded by a plane through the vent� The initial mesh �Figure 
�� contains
������ tetrahedral elements� The mesh contains ������ elements after a pre�
re�nement stage which forces re�nement near the interface between the shock
tube and vent� The larger cylinder �the shock tube� initially contains helium
gas moving at Mach 
��� while the smaller cylinder �the vent� is quiet� A Mach

��� �ow is prescribed at the tube�s inlet and outlet� The walls of the cylinders
are given re�ected boundary conditions� and a far �eld condition is applied at
the vent exit� Flow begins as if a diaphragm between the two cylinders were
ruptured�

This problem was run on 
� processors of an IBM SP� computer� The initial
mesh was partitioned with IRB� and the partitioning was rebalanced with
PSIRB after each adaptive step� Partition quality remains good using PSIRB�
As an example� the partitioning of a ������� element mesh after 
�
 adaptive
re�nement steps has a GSI of ����� and a MLSI of ������ Figure 
� shows the
Mach number with velocity vectors in the vent region� Flow features compare
favorably with experimental and numerical results of Nagamatsu et al� 	����

The �ow accelerates as it enters the vent� A strong shock forms near the down�
wind vent�shock tube interface� A portion of the �ow in the vent accelerates
to supersonic conditions� The re�ection of the �ow from the downwind vent
face produces a component of the �ow at the vent exit in a direction opposite
to the principal �ow direction� In a cannon� this helps to reduce recoil�
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Fig� ��� Muzzle brake 
Example �� initial mesh�

� Discussion

Many of the methods and software libraries used to solve these problems can
be applied in other areas� Those areas under investigation include materials
processing� crystal growth� and biomechanics�

In this paper� we have focused on describing and comparing several load bal�
ancing schemes� Comparisons by timing are di�cult� since times vary between
runs having the same parameters� The high�speed switch of the IBM SP�
computer is a shared resource that a�ects run times� More subtle e�ects can
result from di�erences in the order in which messages used for migration are
processed� Changes in the order in which those messages are received and inte�
grated into the local MDB result in di�erent traversal orders of the mesh enti�
ties� These di�erences cause small changes in load balancings and coarsenings�
While such di�erences in meshes and partitionings do not a�ect the solution
accuracy� they can cause su�cient changes in e�ciency to make precise tim�
ings di�cult� Qualitatively� PSIRB produced the best partitions �measured as
a function of total analysis time�� Octree�generated partitions were compara�
ble but resulted in slightly longer solution times� In both cases� one or two
iterations of partition boundary smoothing led to a quality improvement� ITB
by itself resulted in poorer partition quality� but is useful when mesh changes
are small between computational stages� Predictive enrichment provided su�
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perior performance to our current enrichment process with transient problems
where there are frequent enrichment and balancing steps�

Enhancements to the existing load balancing procedures and the implemen�
tation of new ones are under investigation� Improvements in the slice�by�slice
technique used by ITB for migration are necessary� Experiments with geomet�
rical methods that use the spatial location of elements relative to the centroids
of sending and receiving processors showed promise at reducing the number of
processor interconnections� Vidwans et al� 	��� presented divide�and�conquer
load balancing methods that take advantage of the geometric information in a
similar framework� Using inertial techniques in conjunction with the iterative
methods should give results similar to geometrical methods while potentially
costing less� Balancing methods must optimize the total of partitioning� re�
distribution� and computational costs� However� realizing the di�culty of this
task� methods that select elements to maintain �compactness� of partitions�
those that move elements to improve interprocessor adjacency� and those that
control the volume of data migrated 	��������� are being considered� We are
also seeking more e�cient and e�ective load balancing techniques for use with
time�dependent problems and adaptive p�re�nement� The weightings described
here will be useful with p�re�nement�

We are implementing a general�purpose� object�oriented� parallel adaptive
framework� Parallel structures will be implemented at the lowest level of the
framework to allow some operations to be done in a more natural and e�cient
way than with PMDB� which resides on top of the sequential MDB� The ad�
ditional information which will be available in the object�oriented framework
will allow more sophisticated load balancing procedures to be implemented�

A recent improvement to our �ow solver adds spatially�dependent local time
stepping� Elements that take larger steps wait for elements using smaller
steps to catch up� Preliminary testing indicates a signi�cant reduction in so�
lution times� This extends local temporal re�nement from clusters of uniform
meshes 	��
�� to unstructured meshes� We are extending load balancing to
account for this local time stepping�
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Fig� ��� Density values for Example � at time t � ���� Shading indicates values of
the density on each element�

Fig� �� Partitioning of the mesh for Example � using PSIRB at time t � ����
Shading indicates processor assignments�
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Fig� ��� Initial meshes for Example � distributed onto � processors by PSIRB 
left�
and OCTPART 
right�� Shading indicates processor assignments�

Fig� ��� Mach number with velocity vectors on the symmetry plane for Example ��
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