Computer Science 330

Operating Systems
SIENAcollege siena College

Computer Science Sprl ng 2012

Topic Notes: Processes and Threads

What is a process? Our text defines it as “a program in execuiogood definition).

Definitions from other textbooks:

e an abstraction of a running program
e An asynchronous activity

¢ the “locus of control” of a program in execution

that which is manifest by the existence of a process contockiin the OS

that entity which is assigned to processors

the “dispatchable” unit

the “animated spirit” of a procedure

A process is sequential.

Parts of a process:

e program code (text section)

program counter and other registers

stack (local variables and function call information)

data (global variables)

heap (dynamically allocated variables)

A typical multiprogrammed system has many processes atiaugy fTry ps -aux orps -ef
to see the processes on your favorite Unix system. Only otigesk can be on the processor at a
time.

If we look at theps output on a Unix system, we will see a lot of processes ownewaly Many
of these are essential parts of the system and are intendedtiaoue running as long as the system
is up. These processes are calle@monsand are the motivation for the BSD logo.

So if a process is in the system but not executing on the CPUenbé?

States of a process:

CS 330 Operating Systems Spring 2012

exit

preemption
creation

I/O event
1/0 completion

What information do we need to let a process transition amioegget states?

Think about it in terms of what a person needs to do to get aalat he or she was doing before
being interrupted.

e you’re sitting in the lab working hard on your OS project and®one interrupts you
e your attention shifts and you go off and do something elsafahile

e then when you need to come back to the work, you need to renremtiadyou were doing,
andwhere you werén the process of doing it

We do this all the time, and many of us are really pretty gooid. a& processor can't just pick
up where it left off, unless we carefully remember everyghinwas doing when it was so rudely
interrupted.

A Process Control BlocKPCB) is used to store the information needed to save and eeator
process.

Process state (running, waiting, ready)

Process identifier (PID)

Program counter

Other CPU registers

CPU scheduling information

Memory-management information

Accounting information

I/O status information

In many Unix systems, the PCB is divided between two strusture

e Theproc structure, which holds the process information needed &trads, even when the
process is not active (swapped out).

e Theuserstructure, which holds other information about the process

2

CS 330 Operating Systems Spring 2012

Historically, it was important to keep as much in the usardtire and as little in the proc structure
as possible, because of memory constraints. As memory hendarger, this has become less
important.

In FreeBSD, for example, most of the information is now in tmecpstructure. We can see it
on your favorite FreeBSD 8.2 system (winterstorm)uisr/src/sys/sys/proc.h . See
struct proc defined starting at line 463.

The user structure is iusr/src/sys/sys/user.h (line 223), and it is somewhat smaller. It
contains per-thread information. Part of this stauct kinfo _proc , which inturnincludes a
struct pcb , whichis an architecture-dependent structure definéasirisrc/sys/i386/
include/pcb.h (line 47). Here you find the actual x86 registers that neecetedved when a
process is removed from the CPU. For comparison, check olMIRS version in/usr/src/
sys/mips/include

The transition from one process running on the CPU to anothealied acontext switch This
is pure overhead, so it needs to be fast. Some systems dteit faan others. Hardware support
helps - more on that later.

This requires at least two levels of privilege, or modes aragion:
e User mode: execution of user processes. Low privilege. Thegss can only access its own
memory, cannot perform privileged instructions, etc.
e Monitor mode (kernel mode, system mode): operating systezoution. In this mode, the

process can do things like switch among user processesjsvatthe system, etc.

Hardware supportis needed. We need privileged instrustian be executed only while in monitor
mode. We'll talk more about this as we go forward.

Process Creation/Deletion

In Unix, every process (except for the first) is created franeaisting process. Sexs again for
examples. The processes form a tree, with the root beinithe process (PID=1).

When a new process is created, what information does it infnenn or share with its parent?

e Does it get any resources that were allocated to the parent?

Does the parent wait for the child to complete, or do they eteeconcurrently?

Is the child a duplicate of the parent, or is it something clentaby different?

If it's a duplicate, how much context do they share?

Can the parent terminate before the child?

CS 330 Operating Systems Spring 2012

Creation of a new process is a highly privileged operatioredquires the allocation of a new PCB,
insertion of this PCB into system data structures, among @perations that we would not trust
to regular “user” programs.

The typical solution to this is that such operations are joley throughsystem callsThese system
calls are functions that are part of the operating systemaa@agbermitted to perform some tasks
that a normal process is not able to do on its own. In effeetptiogram temporarily gains a higher
privilege level while executing the system call (if the kelrgrants the permission for the process
to execute the call).

In Unix, thefork() system call duplicates a process. The child is a copy of thenpa in
execution at the same point, the statement after the retommférk()

The return value indicates if you are the new process (tHd)abri the original process (the parent).

0 is child,> 0 means parent, -1 means failure (e.g., a process limit hasreeehed, permission
is denied)

A C program that wishes to create a new process will includie imilar to this pattern:

pid=fork();
if (pid) {
parent stuff;
}
else {
child stuff;

}

A more complete program that usésk() along with three other system calle/dit()
getpid() , andgetppid())isinforking.c

See Example:
“jteresco/shared/cs330/examples/forking
Some comments about this program:

First, we run it to observe what happens. Note that therelysare copy of the printout before the
fork() ,two of the one afterfork() is a very unusual function - you call it once, but it returns
twice!

How do we know how these work? See the man pages!fathe page tells us what we need to
include, and how to use it.

How aboutwait ? If we issue the commanaian wait , we get the man page fdwiltin
as there is a built-invait command in the shell. To get the page we want, we need to gpeecif
manual “section.” Section 2 is the system calls section. ddmmandnan 2 wait will get us
the page we want.

Are there really two processes? Let’s look at the outpytsofs the program runs.

CS 330 Operating Systems Spring 2012

Again, these system calls let you, as a normal user, do thiregonly the system can really do.
Your “user mode” process can get access to “kernel mode'tifumality through these calls.

How many processes can we create on various systems? Whearéhdokmit come from? Can
we create enough processes to take down a system?

See Example:
“jteresco/shared/cs330/examples/forkbomb

The FreeBSD implementation @rk() is in/usr/src/sys/kern/kern _fork.c

Things to note here (for an example — don’t worry about thaitgt

e the action is happening iiork1() , which starts on line 201.

e Line 283: actually allocate the new proc structure witha zalloc , a speciaimalloc
basically (seealloc(9)).
e Line 339: check if a new process is allowed based on globaésyBmits.

Note thatnprocs is the kernel variable that stores the number of active @mseE®Rin the
systemmaxproc is the upper limit on the number of processes allowed.

Note also how a regular user is restricted from creating age®if the system is within 10
of the overall limit.
e Line 378: find an available pid. Note tigoto s.

e Line 523: initialize proc table entry

e Line 693: attach new process to parent — or to init procesdrtain flag is set to say that
the parent should not wait for its child.

e Line 752: set on run queue, so the child can start executing.

We will see that in many cases, you will want to use ttierk(2) system call instead of
fork() . This one doesn't copy the address space of the process suitnas you are going
to replace the newly created process’ program with a new one.

In the Windows world, there is @reateProcess() Win32 call (Win32 is like a POSIX for
Windows) that creates a new process and loads the corregtgonanto that new process.

Soon we will consider more system calls, including ones ligiagou do things more interesting
than making a copy of yourself.

We also will consider later how all this gets started — howsdibet first process get started that
fork s everything else?

Processes may need to communicate with each other in soneeimeresting way than making
copies of themselves. We will see a number of ways this carobe,dncluding the use of a small
chunk of POSIX shared memory.

CS 330 Operating Systems Spring 2012

The textbook has examples of how to create a shared memanyeséghat can be accessed by
your parent and child process.

Another possibility is to have processes pass messageshméaer over the network or through
the file system.

We will spend a good chunk of time later this semester on c@bipg) processes.

Process Scheduling Queues

Since the kernel is going to allow us to create all of thesegsses, it will need to manage them.
Recall the process states.

exit

preemption
creation

1/0 event

1/0 completion

Basically, each process in the system has to be in one of $euenges. These apFocess schedul-
ing queues

The system maintains@ocess tabland the PCBs are stored in these process scheduling queues.

S
; ready queue ‘;1 CPU !
———— =
/O queue I/O request

time slice A
expired

child fork a 5
executes child

interrupt ™\ . wait for an -

\\o-ccﬂf/f v interrupt

f

{

f

The selection of a process from the ready queue to run on the i€ topic for our CPU
scheduling lectures.

A fundamental job of the operating system is to manage thesees.
FreeBSD manages its run/ready queuesign/src/sys/kern/kern _switch.c

There are actually 64 regular queues (this number is defm@di/src/sys/sys/rung.h).
We’'ll think more about what these are about when we talk al®tt scheduling.

CS 330 Operating Systems Spring 2012

As processes go through the system, processes will be adsmgthe CPU (dispatched) or removed
from the CPU dozens or even hundreds of times per second. Edbkse swaps is aontext
switch saving a CPU state in a PCB, then restoring the CPU state to tientsof another PCB.

Remember, the context switch is pure overhead. The systeot toimg any useful computation
when it’s working on a context switch. It had better be fast.

Diagram of context switch:

process P operating system process P,

interrupt ar system call

] save state into PCB, J

idle

| reload state from PCB, | 1
interrupt ar system call

F T

| save state into PCB, |

F idle exacuting

idle

| reload state from PCB, |

Execu“ng ‘U‘\%

FreeBSD does this in what is necessarily an architecturertmt routine.

In fact, it's an assembly source file, not @kr/src/sys/i386/i386/swtch.s

Notes about the context switch:

e Line 114: an assembly code entry point (essentially fung¢topu _switch

Line 127: save hardware registers into PCB.

Line 161: save floating point stuff — note “big C function” 4glsounds expensive.

Line 274: restore PCB of new proc

This function ends up returning to the new process, pickimgvbere it left off the last time
it was switched out! It never knows it was asleep.

Other architectures have specific implementations, suttteddIPS version irusr/src/sys/
mips/mips/swtch.S and/usr/src/sys/sparc64/sparc64/swtch.S

CS 330 Operating Systems Spring 2012

Registers are just one part of a process’ context. What abaubny® What about cache lines?

We'll talk about main memory around spring break. Each pseda the ready/run queues has
some main memory allocated to it.

But cache is another story. Remember how a typical cache igsét is the closest to the CPU
and registers in the memory hierarchy.

As the CPU requests memory, lines of values from memory angghtanto the cache. If all goes
well, these lines will be reused.

But when a context switch occurs, the things from the prodessitas on the CPU that are now in
cache seem unlikely to survive there until that process getther chance on the CPU. We may
force a lot of cache misses, adding more overhead to thexd@wigtch cost.

| nter process Communication

Many processes atiadependentthey are not affected by and do no affect other processes in a
system.

Cooperating processan affect or be affected by other processes, allowing tloeshadre data or to
coordinate in some controlled and useful way to accompbshestask.

There are several motivations for cooperating processes:

¢ Information sharing
o Computational speedup (make use of multiple CPUS)

e Modularity or Convenience

It's hard to find a computer system where processes do notecatgp Consider the commands
you type at the Unix command line. Your shell process and tbegss that executes your com-
mand must cooperate. If you use a pipe to hook up two commaodshave even more process
cooperation.

Cooperating processes must have some communication meghani

There are two primary approachesimterprocess communication (IPQnessage passinga) in
the figure below) anghared memor{(b) in the figure below).

CS 330 Operating Systems Spring 2012

process A process A

shared

process B w process B

n

Lt

kernel M kernel

RN

(a) (b)

We will look in detail at many examples of cooperating praceson. For now, we will just briefly
consider the ideas of message passing and shared memory.

M essage Passing

An IPC message passing facility needs to provide two prweitiperations: aendand areceive

e send(message)

e receive(message)

For two processes to communicatesanmunication linknust be established between them, and
they can then exchange messages using sends and receogssthat link.

There are many implementation-specific questions to censid

How are links established?

Can a link be associated with more than two processes?

How many links can there be between every pair of commumiggtrocesses?

What is the capacity of a link?

Is the size of a message that the link can accommodate fixeatiable?

Is a link unidirectional or bi-directional?

With adirect communicationprocesses are named explicitly in sends and receives:

e send (P, message) senda message to process

CS 330 Operating Systems Spring 2012

o receive(Q, message) receive a message from procéss

Typical properties in this type of communication:

Links are established automatically

A link is associated with exactly one pair of communicatimgqesses

Between each pair there exists exactly one link

The link may be unidirectional, but is usually bi-directadn
An indirect communicatioscheme utilizes the idea ofailboxesor ports

e Each mailbox has a unique identifier (e.g., port number)

e Processes can communicate only if they share a mailbox
Typical properties in this type of communication:

¢ Link established only if processes share a common mailbox

¢ Alink may be associated with many processes

e Each pair of processes may share several communicatian link
¢ Link may be unidirectional or bi-directional

The operations here are to create and destroy mailboxe$y gedd and receive messages through
these mailboxes.

The send/receive primitive operations here take the form:

e send(A, message) send a message to mailbdx

e receive(A, message) receive a message from mailbdx

Messages may Haockingor non-blocking

Blocking messages are callegnchronous

e The sender blocks (i.e., waits) until the message is redeive

e The receiver blocks until a message is available
Non-blocking messages are callesiynchronous

10

CS 330 Operating Systems Spring 2012

e The sender sends the message and continues immediately

e The receiver receives a valid message if one has arrivedillaf not
The amount obufferingor the length of the queue of messages that a link can stoeendiee
some of its functionality:

e Zero capacity buffer: the sender must wait for receiver (kmasrendezvous

e Bounded capacity buffer (finite number of messages): theesendst wait if link buffer is
full

e Unbounded capacity buffer: sender never needs to wait

| PC mechanisms

There are many real IPC implementations, some of which widauak at in detail in class and/or
use in lab:

e POSIX shared memory

e Mach kerneis entirely message-based

e Windows XPlocal procedure call (LPChallows a process to communicate with another
process on the same system

e Socketsllow communication between processes even on differestésys over IP

e Remote procedure call (RP@)lows procedure calls to be made by a process on one system
to be executed on another

¢ Pipesallow communication between two local processes

Threads/Lightweight Processes

Some of you may be familiar with Java threads. You may havedahemActiveObject s.
These gave you the ability to have your programs doing mae tine thing at a time. Such a
program is calleanultithreaded

Threads are a stripped-down form of a process:

e A taskor processcan contain multiplehreads

e Threads share process context

11

CS 330

Threads are asynchronous

Operating Systems

Threads have less context than processes

Spring 2012

Threads can be created/destroyed at a lower cost than pesces
Threads cooperate to do a process in parallel with (relggifime granularity of parallelism

Threads are well-suited to symmetric multiprocessors ($NMIAd multi-core systems

Threads can be useful even in single-user multitaskingeeyst

e Foreground and background work: one thread to deal with ingert, another to update
display, etc such as in a spreadsheet or word processor.

e Asynchronous processing: auto-save features, backgmamgutation.

e Speed execution: compute with one batch of data while rgaaimother.Your process can
be in /0 and on the CPU at the same time!

e Organizing programs: cleaner and more elegant progrargrmlesi

A “normal” single-thread process has its program text, gl@udress space, a stack, and a PC.

A multithreaded process has its program text, a single drglabal address space, but a stack and

a PC for each thread.

[oie Bl == |

| ries |

I Condé | l dala | ! Mles l

regisiers

| stack |

l regisiers

remslors

i QIS |

Ihreag —8= g

l Slaci

gtack

| slack }

:

:

3“"*"‘" Thaead

Each thread also needs to be able to access the registerdtistmna CPU, so while a context
switch between threads will not need to save and restore ab @&l a context switch between
processes, but it will still need to save registers.

Multicore Programming

12

CS 330 Operating Systems Spring 2012

Multithreaded programs are well suited to take advantagheomultiple processing cores found
in most modern computers. But writing a program to do so ctiyraad efficiently is challenging.

The following are some challenges that must be overcome:

¢ Dividing activities — the program needs to be broken down s#parate tasks that can be
run concurrently.

¢ Load balance — the tasks need to perform similar amounts i gince the entire program
would run only as quickly as the slowest (most heavily logdask.

e Data partitioning — the data needed by each task should beiatsd with that task.

o Data dependency — if the execution of one task depends ok cesputed by a second,
synchronization must be performed to make sure the resut the second task is available
before the first attempts to use it.

e Testing and debugging — execution of multithreaded prograntludes tasks that execute
concurrently or in different interleavings. It is very ddiilt to ensure that a program works
correctly for all possible interleavings.

Samplethread application

We consider an NFS (network file system) server. We may loakane detail at network file
services later in the semester, but for now we just think efsterver as having to respond to many
read/write/list requests from clients.

Each client that contacts the server needs attention frensénver process. A single thread of
execution would be unreasonable for all but the most ligltided servers, as requests would
need to be served in order. This could potentially cause tiatays in service time. Realistically,
a new process or thread needs to be created for each request.

With “heavyweight” processes, each request from the nétwonld require a full-fledged process
creation. A series of requests would result in many shorétiin processes being created and
destroyed. Significant overhead would result.

With multithreading, a single NFS server task (a process)east, and a new thread can be
created within the task for each requé'stop-up” threads). There is less overhead, plus if there
are multiple CPUs available, threads can be assigned to eatdster performance.

User Threadsvs. Kernel Threads

Threads may be implemented within a process (in “user spameby the kernel (in “kernel
space”).

With user threads, the kernel sees only the main processhamatocess itself is responsible for
the management (creation, activation, switching, destmcof the threads.

13

CS 330 Operating Systems Spring 2012

With kernel threads, the kernel takes care of all that. Thieedeschedules not just the process, but
the thread.

There are significant advantages and disadvantages to®acte systems provide just one, some
systems, such as Solaris, provide both.

One big thing is that with user threads, it is often the caaéwen a user thread blocks (such as
for 1/0O service), the entire process blocks, even if somermtreads could continue. With kernel
threads, one thread can block while others continue.

The text describes these in a bit more detail, but also poutshat nearly all modern operating
systems support kernel threads.

pthreads POSI X threads

We saw how to uséork() to create processes in Unix. We can also create threads ysiténs
calls. The text discusses POSIX threads, Java threads, an32\WWreads. We will look at just one
type: POSIX threads, usually known as “pthreads”.

Instead of creating a copy of the process likek() , create a new thread, and that thread will
call a functionwithin the current task

This new thread is running the same copy of the program armésklata with other threads within
the process. Any global variables in your program are adues® all threads. Local variables
are directly accessible only to the thread in which they vwoeeated, though the memory can be
shared by passing pointers to your thread functions.

The basic pthread functions are:

int pthread_create(pthread_t *thread, const pthread_attr t * attr,
void = (start_routine)(void *),
void =*arg);
int pthread_join(pthread_t thread, void *x status);
void pthread_exit(void *value_ptr);
e pthread _create(3) — As expected, this creates a new thread. It takes 4 arguments

1. The first is a pointer to a variable of typéhread _t. Upon return, this contains a
thread identifier that is used laterpthread _join()

2. The second is a pointer tgpthread _attr _t that specifies thread creation attributes.
In our initial examples, we pass NULL, which specifies that the thread should be
created using the system default attributes.

3. The third argument is a pointer to a function that will bdlezhwhen the thread is

started. This function must take a single parameter of type * and returnvoid
* .

14

CS 330 Operating Systems Spring 2012

4. The fourth parameter is the pointer that will be passedasitgument to the thread
function.

e pthread _exit(3) — This causes the calling thread to exit. This is called ioiyi if
the thread function returns. Its argument is a return stedlige, which can be retrieved by
pthread _join()

e pthread _join(3) - This causes the calling thread to block until the thread tiié iden-
tifier passed as the first argumenptbread _join() has exited. The second argument is
a pointer to a location where the return status passetht@ad _exit() can be stored.
In the pthreadhello program, we pasNbLL, and hence ignore the value.

See Example:
“jteresco/shared/cs330/examples/pthreadhello

On all three systems we will use (FreeBSD, Linux, Mac OS X), pitetion of a pthreads program
requires that we pass the flgghread togcc to indicate that it should use thread-safe libraries
(more on that idea later).

Itis also a good idea to do some extra initialization, to make the system will allow your threads
to make use of all available processors. It may, by defalldiyvaonly one thread in your program
to be executing at any given time. If your program will creafeto n concurrent threads, you
should make the call:

pthread_setconcurrency(n+1);

somewhere before your first thread creation. The “+1” is Bddd account for the original thread
plus then you plan to create.

You may also want to specify actual attributes as the secoquheent topthread _create()
To do this, declare a variable for the attributes:

pthread_attr_t attr;
and initialize it with:

pthread_attr_init(&attr);

and set parameters on the attributes with calls such as:

pthread_attr_setscope(&attr, PTHREAD_SCOPE_PROCESS);

15

CS 330 Operating Systems Spring 2012

Then, you can pass attr as the second parameterihread _create()

To get a better idea about what context is shared by threadslaat context is shared by processes,
we consider this example:

See Example:

“jteresco/shared/cs330/examples/what _shared

See Example:

“jteresco/shared/cs330/examples/proctree _threads

This example builds a “tree” of threads to a depth given orctiramand line. It includes calls to
pthread _self() . This function returns the thread identifier of the callihgeiad.

We will use pthreads in several class examples and in lab. Wexamine a number of additional
pthread functions as we need them in our examples and assgem

16

