Computer Science 330

Operating Systems
SIENAcollege siena College

Computer Science Sprl ng 2012

Topic Notes: Introduction and Overview

Welcome to Operating Systems!

What do you think of when you talk about an operating system?ngtalled a new operating
system”, “Windows is my least favorite operating systenThat must be a bug in the operating
system”)

What do you expect to learn in a course about operating sy8tems

Operating system topics are always in the news — there ake dklaielopments in the operating
system world. Things change quickly. This course is padyti@invented each time around, though
the concepts remain similar.

Where This Fits In

You learned high-level language programming in your inictdry and data structures courses.

You learned about hardware and assembly language in 220exquavalent. You have a notion of
how to get from circuits to CPUs and memory.

A course in compilers and/or programming languages wowlditeou about how high-level lan-
guages let you program the hardware in a more convenient way.

Many of the things that fit between those (compiled) higtelédanguage programs and the hard-
ware are topics for this course.

So what do you need to do to go from the basic hardware youestudithose courses to the
multi-user systems we are used to on modern computers?

A computer system is made up of a collection of resource$y as@ processor, memory, disks, a
keyboard, printers, network interfaces.

The operating system attempts to regulate the use of thesarces for efficiency, fairness when
multiple users or processes want to use them, and safetyk®e so@e multiple users don'’t interfere
with each other.

We will consider the operating system from two points of viewers and systems.

To a user, the operating system provides a more convenienfaoe. This allows the user to log in,
manipulate files and run programs in a reasonably intuitheé @nvenient manner. Meanwhile,
it provides protection of the user’s data from unauthoriaedess, and ensures that the user is
allocated a fair share of the computer’s resources.

The user would like to do things like run programs and readvarité files and communicate over
the network without worrying about the details of what goesbthe lower levels. The overriding

CS 330 Operating Systems Spring 2012

theme here (as in so much of computer sciencapsgaction!

To a system, the operating system provides safe and effieteeiss to the actual hardware. The
operating system tries to share resources when safe to dalgestrict access when necessary.

We can think of the operating system as a big resource manager

Examples of Problems

Many important ideas in Computer Science arise in the stu@pafrating Systems:

e There are 3 users, each wishing to use the computer at thetsaeneEach has a program
that needs to run for 5 minutes. Is it better for the systenumatine first to completion, then
the second to completion, then the third? Should it switchragrthem once a minute? Once
a second? Once a millisecond? After every instruction? Wimakes the most efficient use
of the system’s resources? Which makes the users happie®? tb® answer depend on
what the program is doing for those 5 minutes?

e Suppose we have two programs, one that generates outpesuakt are used as inputs to
the other. We either do not want to or cannot have the secargtam wait for completion
of the first before it starts to work: the programs must execaincurrently. How can we
manage this situation if values may be generated by the fose muickly than they can be
processed by the second? Or vice versa? Or if the situatiemges over time?

e Suppose we have a one-lane bridge. How can you most efficieathage traffic across the
bridge? This sounds simple enough, but the best answer iaglways clear. Some ideas
include: just let people take turns, have a traffic light this@rnates turns, have a pair of
flaggers, give one direction precedence. But there are maewt problems: what if cars
come in on both sides and meet in the middle? Someone’s goihgve to back up. The
traffic light can be pretty annoying if you're stuck at the el you wait and wait and don’t
see anyone come the other way. This is an unnecessary wait.

e Suppose we have a shared printer. If multiple people waniribgt the same time something
has to make sure the jobs don'’t get intermingled.

e The one-lane bridge example is one example where a deadhocétrise. It can come up in
more subtle ways. Think of this like gridlock. Everyone isitivegy for someone else to do
something before they can proceed. No one gets anywhere.

In a computer system, this could be a situation where twosussed exclusive access to two
resources.

A simple example is two users who need to copy tapes. Themyss two tape drives, and
a tape drive is necessarily granted to one user at a time. Ussguests a drive and gets
it. User 2 requests a drive and gets it. User 1 requests adelrve, but must wait until
User 2 finishes with the one he has. User 2 requests a secordlrt must wait until User
1 finished with the one he has. Uh oh. We can think of this as twagonistic users, but

CS 330 Operating Systems Spring 2012

even “friendly” users may not be aware that they are holdimgsaurce that is preventing
the other resource they need from ever becoming available.

e Suppose we have a collection of processes that are coogertia task. They need to
coordinate. We'll look in some detail at process synchratian both from the point of view
of algorithms that use it and what hardware and operatingsysupport is needed to make
these kinds of programs correct and efficient.

¢ If you have a disk attached to the computer, and several o$¢he computer, how do we
organize data on the disk so it

— is convenient to write and read,
— iIs organized efficiently (quick to access, not a lot of wasjeaice), and

— enforces appropriate protection on the files, to make sweeswsin’t read or worse yet
modify or delete the files that belong to some other user, rgquving the ability to
share data effectively when appropriate?

e Suppose we have a network of computers — like the School ehSeiLabs.

If we have a collection of computers shared among a collecfasers, how can we devise
a system where the resources are efficient and easy to usecyge?

An approach that works well in our lab, where the system<ajfyi have only one user at a
time — the one who is sitting in front of a given computer, niigbt work well in a lab where
the computers are used for long, CPU intensive jobs, sucheghigs rendering or scientific
computation.

Most of the problems that come up are not specific to a giveratipg system or type of computer.
In fact, many of these same problems have been evident freradhest historical systems right
up to current systems.

An interesting thing about operating systems, and in facthmf computer science, is that an
important “historical example” is often no more than a fewatdes old.

Some of the historical examples will likely be very familtaryou. What old systems were in your
childhood? Some from mine include the Commodore 64/128.

And even when you might think some of the issues that were itapbon your (or your parents’?)
old Commodore 64 or Apple][keep coming back in your tabletssmartphones or other smaller-
scale special purpose computers.

The course is not about which is the best operating systemadthl’ll make my opinions known
from time to time and you can do the same). One thing we’ll se@eago is that different systems
have strengths and weaknesses that make them appropriiferant situations.

When we compare approaches to a particular problem, tryidgtermin which approach is better,
the answer will often be “it depends.”

We use Unix-like operating systems as our model, but modenddws systems have most of the
same ideas underneath. Macs are really just Unix systerhsavghiny user interface.

3

CS 330 Operating Systems Spring 2012

What is an Operating System?

One possible definition of an operating system (from ourbiesk): “a program that acts as an
intermediary between a user of a computer and the computeéwhee.”

You can find similar definitions elsewhere.

User Programs

Operating System

Hardware

The termuser is (obviously) the person using a computer or aset programs are the programs
being run on their behalf. It is the user program that makesofithe resources of the computer as
managed by the operating system.

At its most basic level, the operating system is a low-levegpam, which talks directly to com-
puter hardware on behalf of user programs. The operatirtgrsy®rnel is the program that stays
running on the computer at all times. The kernel decides whkat programs can do and when
they can do it, and provides facilities to make it more cometfor them to do it.

We often think of the “operating system” as including a lotrenthan the kernel — system programs
and application programs as well. These utility prograndgpes, office suites, etc., are not part
of the kernel. We will consider mostly things at the kernekle but we will look at some system
programs.

What is the hardware? It could be a small single-user PC, a vaii&s, mainframe, or a super-
computer. It will contain one or more CPUs, main memory, dessources, and I/O devices. It
could also now be something much smaller — an embedded systainandheld computer.

Much of operating system theory focuses on large, multignagning systems — multiple users,
multiple programs, with time sharing.

As desktop and portable computers have become more powtréulssues that were formerly
only the concern of larger systems have become importartti@srhaller scale. And issues that
were formerly the concern of single-user desktops arisablet computers and smartphones.

We consider three main goals and functions of an operatisigsy

¢ to facilitate the use of the hardware by user programs (byigirmg convenience, efficiency,
and flexibility)

¢ to allocate system resources (CPU, memory, /O, file storage)

e to enforce security (controlled access to files, hardwasewees, authentication)

4

CS 330 Operating Systems Spring 2012

These goals are often competing!

e The user of a system wants: convenience, ease of use, ligliaafety, speed

e The system wants: ease of design, implementation, maintenalso flexibilty and effi-
ciency

Common Operating System Components

Many of these components involve all three of the goalstions we listed.

e Command-lineinterpreter (CLI)

— Think: UNIX command line or an MS-DOS prompt.
— Often referred to as thahell.

— A CLI provides a convenient and efficient way to access filesrangrograms on the
system.

— Note that a graphical windowing system is often just a wagsae the same commands
without having to type their names or perhaps without eveswking what they are.

Process Management

— A “process” is a program in execution.
— The operating system is responsible for creation, delesicmeduling, communication.

Main-memory Management

— allocation: who gets to use which memory and when.

— protection: make sure only those processes that are supfmlave access to a certain
part of memory are granted access.

File Management

— creation, deletion, reading, writing.
— file system and directory structures.

— mapping files to hardware: convenience, efficiency, prarare key functions of the
operating system.

I/O System Management

— safe, efficient, and convenient access to the wide arraywiteke
— device driver interface.

CS 330 Operating Systems Spring 2012

— buffering.

Secondary Storage Management

— storage allocation, including free space management.
— disk scheduling: efficiency improvements.
— caching: efficiency.

Networking

— another device to manage, but one with high-speed infoomdiow.

Protection System
— specification and enforcement of access controls.

Error Detection

— hardware or user program errors.

— deal with them gracefully: terminate only one program rathan the whole system if
possible.

— detect serious hardware errors

Mechanism vs. Policy: mechanisms are provided to perfoskstapolicy determines what will
actually be done. Separation of mechanism from policy isygyortant principle. Allowing policy
to be changed later allows maximum flexibility.

Some History

We take a brief look at the historical development of compsystems from the point of view of
operating systems.

Very Early Systems

Here, we had just one user at a time. Everyone involved is parexA user would sign up for a
block of time to go program the computer (possibly involvpiggboards) and run the program.

This was very expensive. The machines were huge and expessi/they would sit there idle
guite a bit while waiting for people or card readers or othemy\slow things.

Early Mainframe/Batch Systems

We still have one job in the system at a time. But the jobs ar&ctbprocesses” — non-interactive
process. You set everything up beforehand, wait your tusay program runs, and you get your
output.

System memory is organized very simply:

CS 330 Operating Systems Spring 2012

operating
system

user program
area

Card Reader (inputy— Memory/CPU (computatiom}— Line Printer (output)

The big problem here is that card readers and line printerslaw - what is this expensive CPU
doing while the card reader is loading a program or while i@t is being printed? It's idle. Not
good.

With disks able to provide direct access to informtion, therating system of batch computers was
able to use the faster disk (in relation to the card readedganters anyway) tgpool upcoming
jobs and output. (Spool means Simultaneous PeripheralapeiOn-Line). This means that the
CPU can stay busier — still bett@PU utilization.

But, we still have some idle time for the CPU. Disk is much slotiran the CPU, both then and
today. When a job needs access to the disk (or any other I/Q¢ wtairting up, during the run, or
when writing its output, the CPU is still idle or nearly idleh8re’s also the potential for infinite
loops in programs. If some user’s program goes into an ieflop, it would probably have to be
stopped manually.

So we move on to...

Multiprogramming Batch Systems
Here, we have multiple jobs in the system. The CPU can exeoytg@h that is in memory.

System memory now needs a bit more complicated organization

CS 330 Operating Systems Spring 2012

operating
system

job 1

job 2

job 3

job 4

When one job needs to access I/O or anything else that woukkdhe CPU to be idle, another
job is selected to run while the 1/O request is serviced.

This brings up some new issues that we will discuss laterarsémester:

A resident monitor program needs to coordinate all of this.

The monitor program ig charge. It's allowed to do things that regular user programs can'’t
do.

This is the start of the dual nature of operating systems —itaovs. user.

I/O devices must be able to operate without the CPU, as the CRil$lwe busy with another
job when I/O is taking place.

I/0 request must be made througystem calls - not direct to hardware. Imagine two jobs
both sending lines of output to the printer any time they went
System calls have access to the hardware, whereas the asesges should not.

The user process doesn’t know how a system call works, justtbacall it and what it's
supposed to do.

To open a file, for example, a user mode program makes a systémhich runs in moni-
tor/kernel mode, which does the actual I/O.

The monitor program can then ensure safety of the I/O reqsesiell as hand off the CPU
to another job while the 1/0 request is processed.

The monitor needs to choose which job to run next when one jakesian I/O request or
terminates. This i€PU scheduling.

The system needs to make sure that job 1 can’t read or irgesfiéh job 2's memoryMem-
ory management and protection.

CS 330 Operating Systems Spring 2012

The dual mode operation requires some hardware supportsygtem needs to be able to distin-
guish things that users are allowed to daofrivileged operations) and things that only the system
can do privileged operations).

This requires anode bit or something similar to control whether the CPU should benadtb to
perform privileged operations. The kernel needs to setdHigser mode” before calling user code
and user code that needs to do anything that requires “systae” must do so through a system
call.

If a user program tries to perform a privileged instructiamam in user mode, it will not be allowed
— will trap to the operating system.

We'll see more on this as we continue.

The ideas of traps aniahterrupts become important as well. If a user program does something
illegal (regardless of whether it is malicious) it should eoash the system — just “trap” to the
operating system.

The operating system can do something appropriate by pgi@in error or killing the process, or
maybe fixing a problem that caused the trap and allowing tbegss to continue.

But.. there are still significant limits...

Programs are not guaranteed to be perfect and could havédrfiops. And since the users
are probably not closely watching their programs executelatch environment, it might not be
noticed quickly.

We also would need to make sure that a severe program ermpiaters, division by 0) would
halt the user program but not the entire system, as othergmewould also be in progress.

But.. what about interactive processes?

Time-sharing Systems

The batch systems do not allow user interaction with thenamg This is obviously not sufficient
in all cases, so operating systems evolved to allow a morergbmultitasking.

Users can runnteractively using a keyboard and a terminal display (or windowing sysiez
modern equivalent). A user typing at the keyboarohigh slower than a computer.

People multitask all the time (for better or for worse). Cdesifor example lawyers who take
multiple cases to keep themselves occupied.

This is done by switching among user processes automat@atl transparently. The goal for a
CPU scheduler with interactive processes is to ensure tlehtinteractive user gets a turn on the
CPU quickly to achieve a goagsponse time. We also need to be able to switch among processes
quickly with an efficientcontext switching mechanism.

Such systems depend heavily on the idea of interrupts, vétlioWv devices or the operating system
to take control of the CPU even when it is executing a user ggce

The considerations are similar to what happens when youitaskt How many tasks can you

9

CS 330 Operating Systems Spring 2012

switch among before getting overwhelmed? Is it better tokwmr each for a few seconds at a
time, a few minutes, or a whole day? How often do your tasksrdetrupted (by texts, tweets,
facebook, or emails, for example)?

Many of the concepts we’ll talk about this term are presembiritiprogramming and time-sharing
systems.

Personal Computers

PC'’s appeared when computers became cheap enough thateausegto have one dedicated for
his or her own use.

Such a system has different needs. CPU utilization is gdperat the biggest concern, since there
are no other jobs waiting to execute. User convenience apbnsiveness are the top concerns.
Having just one user means protection and security are rpiritant.

As desktop computers became more and more powerful, the a@ye@used them evolved into a
workstation model. There are multiple processes, remote access, ngeauainy of the concerns
originally only dealt with by multiprogrammed and time-sbé systems are now addressed by PC
operating systems.

As you know from previous courses, modern computers candweed as a collection of compo-
nents connected by a bus.

mouse keyboard printer monitor
disks

os ¢

disk
gy ‘ controller F USB controller ‘

graphics
adapter

memory

This is the kind of system we will spend most of our time coasial.

Parallel and Distributed Systems

Things really get interesting when we introduce multiple GPThey might be in the same system,
or they might be distributed across a number of systems. @Diaps we have a whole collection
of uniprocessor systems that might make sense to use or masaggroup.

Modern supercomputers can include hundreds of thousanpiooéssors, with combinations of
shared and distributed memory. Modern desktop and portainiguters contain multipleor es,
which are basically multiple CPUs from the perspective ofdperating system.

Many operating systems issues come up in such systems, dhthikeabout those throughout the
semester.

10

CS 330 Operating Systems Spring 2012

Real-time systems

We will not focus on real-time systems, but will mention théom time to time. These are used
for systems that perform tasks such as reading criticalosarsdues or controlling some device.
The devices could range from kitchen appliance controls aos\xplorer robots.

Hard real-time systems for critical applications have wregid restrictions: e.g, automated vehicle
(car, airplane, spacecraft) control. Missing a deadlirmigntially disastrous.

Soft real-time systems are less critical - visualizatiaatics, multimedia.

Handheld systems

This is a relatively new and quickly evolving category of qarter. It started with PDAs, and cell
phones with limited capabilities but now includes advansetrtphones and tablet computers.
Many of the issues that have trickled down from the multipamgming and time-shared systems
to the personal computer and workstation world are nowistatd get down to this level. These
have relatively slower processors, smaller displaystdchmemory and non-volatile storage.

11

