
Computer Science 330
Operating Systems
Siena College
Spring 2012

Topic Notes: Introduction and Overview

Welcome to Operating Systems!

What do you think of when you talk about an operating system? (“I installed a new operating
system”, “Windows is my least favorite operating system”, “That must be a bug in the operating
system”)

What do you expect to learn in a course about operating systems?

Operating system topics are always in the news – there are daily developments in the operating
system world. Things change quickly. This course is partially reinvented each time around, though
the concepts remain similar.

Where This Fits In
You learned high-level language programming in your introductory and data structures courses.

You learned about hardware and assembly language in 220 or anequivalent. You have a notion of
how to get from circuits to CPUs and memory.

A course in compilers and/or programming languages would teach you about how high-level lan-
guages let you program the hardware in a more convenient way.

Many of the things that fit between those (compiled) high-level language programs and the hard-
ware are topics for this course.

So what do you need to do to go from the basic hardware you studied in those courses to the
multi-user systems we are used to on modern computers?

A computer system is made up of a collection of resources, such as a processor, memory, disks, a
keyboard, printers, network interfaces.

The operating system attempts to regulate the use of these resources for efficiency, fairness when
multiple users or processes want to use them, and safety to make sure multiple users don’t interfere
with each other.

We will consider the operating system from two points of view: users and systems.

To a user, the operating system provides a more convenient interface. This allows the user to log in,
manipulate files and run programs in a reasonably intuitive and convenient manner. Meanwhile,
it provides protection of the user’s data from unauthorizedaccess, and ensures that the user is
allocated a fair share of the computer’s resources.

The user would like to do things like run programs and read andwrite files and communicate over
the network without worrying about the details of what goes on at the lower levels. The overriding

CS 330 Operating Systems Spring 2012

theme here (as in so much of computer science) isabstraction!

To a system, the operating system provides safe and efficientaccess to the actual hardware. The
operating system tries to share resources when safe to do so and restrict access when necessary.

We can think of the operating system as a big resource manager.

Examples of Problems
Many important ideas in Computer Science arise in the study ofOperating Systems:

• There are 3 users, each wishing to use the computer at the sametime. Each has a program
that needs to run for 5 minutes. Is it better for the system to run the first to completion, then
the second to completion, then the third? Should it switch among them once a minute? Once
a second? Once a millisecond? After every instruction? Whichmakes the most efficient use
of the system’s resources? Which makes the users happiest? Does the answer depend on
what the program is doing for those 5 minutes?

• Suppose we have two programs, one that generates output values that are used as inputs to
the other. We either do not want to or cannot have the second program wait for completion
of the first before it starts to work: the programs must execute concurrently. How can we
manage this situation if values may be generated by the first more quickly than they can be
processed by the second? Or vice versa? Or if the situation changes over time?

• Suppose we have a one-lane bridge. How can you most efficiently manage traffic across the
bridge? This sounds simple enough, but the best answer is notalways clear. Some ideas
include: just let people take turns, have a traffic light thatalternates turns, have a pair of
flaggers, give one direction precedence. But there are many potential problems: what if cars
come in on both sides and meet in the middle? Someone’s going to have to back up. The
traffic light can be pretty annoying if you’re stuck at the redand you wait and wait and don’t
see anyone come the other way. This is an unnecessary wait.

• Suppose we have a shared printer. If multiple people want to print at the same time something
has to make sure the jobs don’t get intermingled.

• The one-lane bridge example is one example where a deadlock can arise. It can come up in
more subtle ways. Think of this like gridlock. Everyone is waiting for someone else to do
something before they can proceed. No one gets anywhere.

In a computer system, this could be a situation where two users need exclusive access to two
resources.

A simple example is two users who need to copy tapes. The system has two tape drives, and
a tape drive is necessarily granted to one user at a time. User1 requests a drive and gets
it. User 2 requests a drive and gets it. User 1 requests a second drive, but must wait until
User 2 finishes with the one he has. User 2 requests a second drive, but must wait until User
1 finished with the one he has. Uh oh. We can think of this as two antagonistic users, but

2

CS 330 Operating Systems Spring 2012

even “friendly” users may not be aware that they are holding aresource that is preventing
the other resource they need from ever becoming available.

• Suppose we have a collection of processes that are cooperating on a task. They need to
coordinate. We’ll look in some detail at process synchronization both from the point of view
of algorithms that use it and what hardware and operating system support is needed to make
these kinds of programs correct and efficient.

• If you have a disk attached to the computer, and several usersof the computer, how do we
organize data on the disk so it

– is convenient to write and read,

– is organized efficiently (quick to access, not a lot of wastedspace), and

– enforces appropriate protection on the files, to make sure users can’t read or worse yet
modify or delete the files that belong to some other user, but preserving the ability to
share data effectively when appropriate?

• Suppose we have a network of computers – like the School of Science Labs.

If we have a collection of computers shared among a collection of users, how can we devise
a system where the resources are efficient and easy to use, yetsecure?

An approach that works well in our lab, where the systems typically have only one user at a
time – the one who is sitting in front of a given computer, might not work well in a lab where
the computers are used for long, CPU intensive jobs, such as graphics rendering or scientific
computation.

Most of the problems that come up are not specific to a given operating system or type of computer.
In fact, many of these same problems have been evident from the eariest historical systems right
up to current systems.

An interesting thing about operating systems, and in fact much of computer science, is that an
important “historical example” is often no more than a few decades old.

Some of the historical examples will likely be very familiarto you. What old systems were in your
childhood? Some from mine include the Commodore 64/128.

And even when you might think some of the issues that were important on your (or your parents’?)
old Commodore 64 or Apple][keep coming back in your tablets and smartphones or other smaller-
scale special purpose computers.

The course is not about which is the best operating system (though I’ll make my opinions known
from time to time and you can do the same). One thing we’ll see as we go is that different systems
have strengths and weaknesses that make them appropriate indifferent situations.

When we compare approaches to a particular problem, trying todetermin which approach is better,
the answer will often be “it depends.”

We use Unix-like operating systems as our model, but modern Windows systems have most of the
same ideas underneath. Macs are really just Unix systems with a shiny user interface.

3

CS 330 Operating Systems Spring 2012

What is an Operating System?
One possible definition of an operating system (from our textbook): “a program that acts as an
intermediary between a user of a computer and the computer hardware.”

You can find similar definitions elsewhere.

User Programs

Operating System

Hardware

The termuser is (obviously) the person using a computer or anduser programs are the programs
being run on their behalf. It is the user program that makes use of the resources of the computer as
managed by the operating system.

At its most basic level, the operating system is a low-level program, which talks directly to com-
puter hardware on behalf of user programs. The operating systemkernel is the program that stays
running on the computer at all times. The kernel decides whatuser programs can do and when
they can do it, and provides facilities to make it more convenient for them to do it.

We often think of the “operating system” as including a lot more than the kernel – system programs
and application programs as well. These utility programs, editors, office suites, etc., are not part
of the kernel. We will consider mostly things at the kernel level, but we will look at some system
programs.

What is the hardware? It could be a small single-user PC, a workstation, mainframe, or a super-
computer. It will contain one or more CPUs, main memory, disk resources, and I/O devices. It
could also now be something much smaller – an embedded systemor a handheld computer.

Much of operating system theory focuses on large, multiprogramming systems – multiple users,
multiple programs, with time sharing.

As desktop and portable computers have become more powerful, the issues that were formerly
only the concern of larger systems have become important on the smaller scale. And issues that
were formerly the concern of single-user desktops arise in tablet computers and smartphones.

We consider three main goals and functions of an operating system:

• to facilitate the use of the hardware by user programs (by providing convenience, efficiency,
and flexibility)

• to allocate system resources (CPU, memory, I/O, file storage)

• to enforce security (controlled access to files, hardware resources, authentication)

4

CS 330 Operating Systems Spring 2012

These goals are often competing!

• The user of a system wants: convenience, ease of use, reliability, safety, speed

• The system wants: ease of design, implementation, maintenance, also flexibilty and effi-
ciency

Common Operating System Components

Many of these components involve all three of the goals/functions we listed.

• Command-line interpreter (CLI)

– Think: UNIX command line or an MS-DOS prompt.

– Often referred to as theshell.

– A CLI provides a convenient and efficient way to access files andrun programs on the
system.

– Note that a graphical windowing system is often just a way to issue the same commands
without having to type their names or perhaps without even knowing what they are.

• Process Management

– A “process” is a program in execution.

– The operating system is responsible for creation, deletion, scheduling, communication.

• Main-memory Management

– allocation: who gets to use which memory and when.

– protection: make sure only those processes that are supposed to have access to a certain
part of memory are granted access.

• File Management

– creation, deletion, reading, writing.

– file system and directory structures.

– mapping files to hardware: convenience, efficiency, protection are key functions of the
operating system.

• I/O System Management

– safe, efficient, and convenient access to the wide array of devices.

– device driver interface.

5

CS 330 Operating Systems Spring 2012

– buffering.

• Secondary Storage Management

– storage allocation, including free space management.

– disk scheduling: efficiency improvements.

– caching: efficiency.

• Networking

– another device to manage, but one with high-speed information flow.

• Protection System

– specification and enforcement of access controls.

• Error Detection

– hardware or user program errors.

– deal with them gracefully: terminate only one program rather than the whole system if
possible.

– detect serious hardware errors

Mechanism vs. Policy: mechanisms are provided to perform tasks, policy determines what will
actually be done. Separation of mechanism from policy is an important principle. Allowing policy
to be changed later allows maximum flexibility.

Some History
We take a brief look at the historical development of computer systems from the point of view of
operating systems.

Very Early Systems

Here, we had just one user at a time. Everyone involved is an expert. A user would sign up for a
block of time to go program the computer (possibly involvingplugboards) and run the program.

This was very expensive. The machines were huge and expensive and they would sit there idle
quite a bit while waiting for people or card readers or other very slow things.

Early Mainframe/Batch Systems

We still have one job in the system at a time. But the jobs are “batch processes” – non-interactive
process. You set everything up beforehand, wait your turn, your program runs, and you get your
output.

System memory is organized very simply:

6

CS 330 Operating Systems Spring 2012

area
user program

operating
system

Card Reader (input)−→ Memory/CPU (computation)−→ Line Printer (output)

The big problem here is that card readers and line printers are slow - what is this expensive CPU
doing while the card reader is loading a program or while the output is being printed? It’s idle. Not
good.

With disks able to provide direct access to informtion, the operating system of batch computers was
able to use the faster disk (in relation to the card readers and printers anyway) tospool upcoming
jobs and output. (Spool means Simultaneous Peripheral Operation On-Line). This means that the
CPU can stay busier – still betterCPU utilization.

But, we still have some idle time for the CPU. Disk is much slowerthan the CPU, both then and
today. When a job needs access to the disk (or any other I/O) while starting up, during the run, or
when writing its output, the CPU is still idle or nearly idle. There’s also the potential for infinite
loops in programs. If some user’s program goes into an infinite loop, it would probably have to be
stopped manually.

So we move on to...

Multiprogramming Batch Systems

Here, we have multiple jobs in the system. The CPU can execute any job that is in memory.

System memory now needs a bit more complicated organization:

7

CS 330 Operating Systems Spring 2012

job 4

operating
system

job 1

job 2

job 3

When one job needs to access I/O or anything else that would cause the CPU to be idle, another
job is selected to run while the I/O request is serviced.

This brings up some new issues that we will discuss later in the semester:

• A resident monitor program needs to coordinate all of this.

• The monitor program isin charge. It’s allowed to do things that regular user programs can’t
do.

• This is the start of the dual nature of operating systems – monitor vs. user.

• I/O devices must be able to operate without the CPU, as the CPU would be busy with another
job when I/O is taking place.

• I/O request must be made throughsystem calls - not direct to hardware. Imagine two jobs
both sending lines of output to the printer any time they wanted.

System calls have access to the hardware, whereas the user processes should not.

The user process doesn’t know how a system call works, just how to call it and what it’s
supposed to do.

To open a file, for example, a user mode program makes a system call which runs in moni-
tor/kernel mode, which does the actual I/O.

The monitor program can then ensure safety of the I/O requestas well as hand off the CPU
to another job while the I/O request is processed.

• The monitor needs to choose which job to run next when one job makes an I/O request or
terminates. This isCPU scheduling.

• The system needs to make sure that job 1 can’t read or interfere with job 2’s memory.Mem-
ory management and protection.

8

CS 330 Operating Systems Spring 2012

The dual mode operation requires some hardware support. Thesystem needs to be able to distin-
guish things that users are allowed to do (unprivileged operations) and things that only the system
can do (privileged operations).

This requires amode bit or something similar to control whether the CPU should be allowed to
perform privileged operations. The kernel needs to set thisto “user mode” before calling user code
and user code that needs to do anything that requires “systemmode” must do so through a system
call.

If a user program tries to perform a privileged instruction when in user mode, it will not be allowed
– will trap to the operating system.

We’ll see more on this as we continue.

The ideas of traps andinterrupts become important as well. If a user program does something
illegal (regardless of whether it is malicious) it should not crash the system – just “trap” to the
operating system.

The operating system can do something appropriate by printing an error or killing the process, or
maybe fixing a problem that caused the trap and allowing the process to continue.

But.. there are still significant limits...

Programs are not guaranteed to be perfect and could have infinite loops. And since the users
are probably not closely watching their programs execute ina batch environment, it might not be
noticed quickly.

We also would need to make sure that a severe program error (bad pointers, division by 0) would
halt the user program but not the entire system, as other programs would also be in progress.

But.. what about interactive processes?

Time-sharing Systems

The batch systems do not allow user interaction with the program. This is obviously not sufficient
in all cases, so operating systems evolved to allow a more generalmultitasking.

Users can runinteractively using a keyboard and a terminal display (or windowing systemin a
modern equivalent). A user typing at the keyboard ismuch slower than a computer.

People multitask all the time (for better or for worse). Consider for example lawyers who take
multiple cases to keep themselves occupied.

This is done by switching among user processes automatically and transparently. The goal for a
CPU scheduler with interactive processes is to ensure that each interactive user gets a turn on the
CPU quickly to achieve a goodresponse time. We also need to be able to switch among processes
quickly with an efficientcontext switching mechanism.

Such systems depend heavily on the idea of interrupts, whichallow devices or the operating system
to take control of the CPU even when it is executing a user process.

The considerations are similar to what happens when you multitask. How many tasks can you

9

CS 330 Operating Systems Spring 2012

switch among before getting overwhelmed? Is it better to work on each for a few seconds at a
time, a few minutes, or a whole day? How often do your tasks getinterrupted (by texts, tweets,
facebook, or emails, for example)?

Many of the concepts we’ll talk about this term are present inmultiprogramming and time-sharing
systems.

Personal Computers

PC’s appeared when computers became cheap enough that a single user to have one dedicated for
his or her own use.

Such a system has different needs. CPU utilization is generally not the biggest concern, since there
are no other jobs waiting to execute. User convenience and responsiveness are the top concerns.
Having just one user means protection and security are not important.

As desktop computers became more and more powerful, the way people used them evolved into a
workstation model. There are multiple processes, remote access, meaning many of the concerns
originally only dealt with by multiprogrammed and time-shared systems are now addressed by PC
operating systems.

As you know from previous courses, modern computers can be viewed as a collection of compo-
nents connected by a bus.

This is the kind of system we will spend most of our time considering.

Parallel and Distributed Systems

Things really get interesting when we introduce multiple CPUs. They might be in the same system,
or they might be distributed across a number of systems. Or perhaps we have a whole collection
of uniprocessor systems that might make sense to use or manage as a group.

Modern supercomputers can include hundreds of thousands ofprocessors, with combinations of
shared and distributed memory. Modern desktop and portablecomputers contain multiplecores,
which are basically multiple CPUs from the perspective of theoperating system.

Many operating systems issues come up in such systems, and we’ll talk about those throughout the
semester.

10

CS 330 Operating Systems Spring 2012

Real-time systems

We will not focus on real-time systems, but will mention themfrom time to time. These are used
for systems that perform tasks such as reading critical sensor values or controlling some device.
The devices could range from kitchen appliance controls to Mars explorer robots.

Hard real-time systems for critical applications have veryrigid restrictions: e.g, automated vehicle
(car, airplane, spacecraft) control. Missing a deadline ispotentially disastrous.

Soft real-time systems are less critical - visualization, robotics, multimedia.

Handheld systems

This is a relatively new and quickly evolving category of computer. It started with PDAs, and cell
phones with limited capabilities but now includes advancedsmartphones and tablet computers.
Many of the issues that have trickled down from the multiprogramming and time-shared systems
to the personal computer and workstation world are now starting to get down to this level. These
have relatively slower processors, smaller displays, limited memory and non-volatile storage.

11

