
Computer Science 330
Operating Systems
Siena College
Spring 2012

Programming Project 1: Process Tree
Due: 9:20 AM, Friday, February 3, 2012

Write a C program that creates a “binary tree” of Unix processes, similar to the class example that
does the same using POSIX threads.

You may work alone or with a partner on this project.

Requirements

Call your programproctree.c and add a rule to yourMakefile to compile this program into
proctree.

Your program should take a single command-line parameter which specifies the number of levels
in the binary process tree. Each process should be assigned anumber corresponding to its position
in a level-order traversal of the tree.

Given a height of 3, the tree can be thought of as this binary tree, where the parent-child links are
not explicitly stored by your program but are part of the Unixprocess hierarchy. The tree should
look something like this:

traversal pos 2

pid 81148
ppid 81143

ppid 48569

traversal pos 6
pid 81146

ppid 81144

pid 81142

traversal pos 7
pid 81147

ppid 81144

traversal pos 1

traversal pos 4
pid 81145

ppid 81143

ppid 81142
pid 81143

traversal pos 3
pid 81144

ppid 81142

traversal pos 5

You won’t draw a graphical representation, but your program’s processes should print out the
information about the tree, as follows:



CS 330 Operating Systems Spring 2012

-> ./proctree 3
[1] pid 81142, ppid 48569
[1] pid 81142 created left child with pid 81143
[1] pid 81142 created right child with pid 81144
[2] pid 81143, ppid 81142
[3] pid 81144, ppid 81142
[2] pid 81143 created left child with pid 81145
[3] pid 81144 created left child with pid 81146
[3] pid 81144 created right child with pid 81147
[4] pid 81145, ppid 81143
[2] pid 81143 created right child with pid 81148
[6] pid 81146, ppid 81144
[7] pid 81147, ppid 81144
[5] pid 81148, ppid 81143
[3] right child 81147 of 81144 exited with status 7
[3] left child 81146 of 81144 exited with status 6
[2] right child 81148 of 81143 exited with status 5
[2] left child 81145 of 81143 exited with status 4
[1] right child 81144 of 81142 exited with status 3
[1] left child 81143 of 81142 exited with status 2

Note that each line of output is indented according to the depth of the node in the process tree and
begins by printing the traversal position of the process that prints it.

Your program’s processes should produce output in the following situations:

• When each process is created, it should print its traversal position, its pid (process ID, ob-
tained usinggetpid(2)) and ppid (parent process ID, obtained usinggetppid(2)).

• After a process spawns a child process, it should print its own (not the new child’s) traversal
position, its own pid, and the pid of the newly-spawned childalong with an indication of
whether this child forms its “left” or “right” subtree.

• When a child exits (usingexit(3)), it should provide its traversal position as its exit status.
This value should be obtained by the parent when it callswaitpid(2) and printed along
with the parent’s traversal position, whether the terminated child is a left or right subtree,
the parent’s pid, the terminated child’s pid and the exit status, which should be the child’s
traversal position.

To be able to see what’s happening and to reduce the chances that the output of your processes will
be interleaved, you should put in calls tosleep(3).

You need not use shared memory for this program. In fact, it will probably confuse things if you
try.

This program, as you are developing it, has a good chance of becoming a “fork bomb”. To reduce
the chances that this happens, you should check the return value of yourfork() calls and stop if

2



CS 330 Operating Systems Spring 2012

it returns-1, which indicates that you were unable to spawn a process. Youshould also limit your
trees to small heights when debugging. Feel free to try larger tree sizes once you’re confident that
your program is working to see how large a tree you can get before you run out of processes. Try it
at least on the FreeBSD machine (winterstorm), and a Linux system in the lab. Include these
results in the comment at the top of your program.

Submission and Evaluation

This project is graded out of 25 points.

To submit this project, send your C source file andMakefile as attachments tojteresco@siena.-
edu by 9:20 AM, Friday, February 3, 2012.

Grading Breakdown

Correct number of levels created 4 points
Correct total number of processes created 2 points
Correct usage offork system call, including error checks2 points
Correct usage ofwaitpid system call 2 points
Correct printing of child exit status in parent 1 point
Sleep between successive levels 1 point
Traversal order labels 3 points
Indentation based on tree level 2 points
Largest tree size reported in comment 1 point
Documentation 4 points
Design and style 2 points
Makefile 1 point

3


