
Computer Science 330
Operating Systems
Siena College
Spring 2012

Programming Project 2: CPU Scheduler Simulation
Program Due: 9:20 AM, Friday, February 17, 2012

Writeup Due: 10:00 AM, Tuesday, February 21, 2012

For this project, you will be developing a simulator in C to beused to study CPU scheduling. You
may work alone or in groups of 2 or 3. Collaboration within a group is, of course, unrestricted.
You may discuss the program with members of other groups, butwhat you turn in must be your
own group’s work. Groups must be formed no later than Monday,February 6, 2012, and be
confirmed by all group members by electronic mail tojteresco@siena.edu. All group members
will be assigned the same grade for the project.

Warning: Significant design and programming effort will be necessaryto complete this project.
You may develop your programs in any environment, as long as Ican compile and execute your
code on either the Roger Bacon 306 Linux systems or on winterstorm. If you are not yet a C
expert, this is an opportunity to become an expert. This is strongly encouraged, but you may
choose to program in another language at the cost of a 10% penalty on the programming part of
this assignment.

The case studies and writeup account for a significant part ofthe grade, so keep that in mind as you
plan your time. Although the programming is not due until 9:20 AM, Friday, February 17, 2012, I
recommend finishing up the code sooner to leave extra time forthe writeup.

Discrete Event Simulation

Discrete event simulation is a method used to model real world systems that can be decomposed
into a series of logicalevents that happen at specific times. The main restriction on the system is
that an event cannot affect the outcome of a prior event. When an event is generated, it is assigned
a timestamp, and is stored in anevent queue (a priority queue). Alogical clock is maintained
to represent the current simulation time. At any point in thesimulation, the next event to take
place is at the head of the event queue. Since nothing interesting can happen between the current
simulation time and the time of the event at the head of the event queue, removal of an event for
processing allows the logical clock to be incremented to that event’s timestamp. We know that we
didn’t miss anything interesting, because if something else was going to happen before that event,
an event would have been in the system that would come out of the event queue before this one.

Multiple events may have the same timestamp. This models events that happen concurrently. Even
though the events are processed sequentially by the simulator, they occur at the same logical time.
It does not matter which order you process such events in yoursimulator.

We use this model to simulate a simple operating system. Processes arrive in the system and take
turns executing on one or more CPUs, possibly spending some time waiting for I/O service. Each
process remains in the system until its predetermined computational needs are met. There are a



CS 330 Operating Systems Spring 2012

small number of events that can occur that will affect the system, and it is these events that drive
the simulation.

System Description

You are to design and implement a discrete event simulator tomodel a CPU scheduler. You will
then use your simulator to conduct studies of the performance of CPU scheduling algorithms.

Your program should implement a queueing system, as shown here:

I/O Complete

..

CPUs

.

I/O Subsystem

Ready
Queue

New Process Arrival

Dispatch

Quantum Expiration

Process
Complete

I/O Fault

Processes enter the system and wait for their turn on a CPU. They run on a CPU, possibly being
pre-empted by the scheduler or for I/O service, until they have spent their entire service time on a
CPU, at which point they leave the system.

A logical clock is used to coordinate all events in the system; the “ticks” of the clock are measured
in (arbitrary) “time units.” The total simulation time is a parameter supplied by the user.

An input file specifies the frequency and length of new processes to be introduced into the system.
Each time a new process enters the system, an event is generated that will result in the creation of
the next process of the same type to enter the system. The format of the input file and the meaning
of its entries are described later in this document.

The ready queue contains the processes in the system that are ready to run on aCPU when no
CPU is available to run them. A process is selected from the front of the ready queue when a
CPU becomes available. If the ready queue is empty, a process entering the ready state should be
assigned to any idle CPU immediately.

Each process can spend up to, but not more than, onequantum on a CPU before it is switched out.
The quantum is a system wide constant value, entered as a parameter by the user. Note: setting a
quantum of 0 should result in a non-preemptive scheduler.

When a process is assigned to a CPU, an event should be generatedthat will remove it from a CPU
at a later time.

2



CS 330 Operating Systems Spring 2012

1. If the time remaining for the process to complete is less than the time to the next I/O fault or
the quantum, an event is generated that will cause the process to leave the system.

2. Else, if the time remaining for the process to I/O fault (see next item) is less than the quantum,
an event is generated that will cause the process to leave forI/O service.

3. Else the process’ quantum will expire. An event is generated that will return the process to
the ready queue.

Context switch cost is entered as a parameter by the user and should be accounted for when gener-
ating events and gathering statistics.

A process executes for a set number of clock cycles (itsburst time) between each I/O fault. This
number is constant on a per-process basis - it is determined for each process when it is created, and
remains the same for the duration of the process.

The time needed to service an I/O fault is determined for eachprocess, and remains constant for
the lifetime of that process. We make the unrealistic assumption that the I/O subsystem can handle
an infinite number of requests at the same time with no loss of turnaround time. When each process
enters I/O service, an event is created to take place at the time of the service’s completion.

User-supplied Parameters

Your simulator should be controlled by a number of command-line parameters and an input file
describing the creation of new processes.

You may find thegetopt long(3) library function useful for parsing your command-line pa-
rameters.

Switch Description Default

−−procgen-file, -f File name for the process generation description filepg.txt
−−num-cpus, -c Number of CPUs 1
−−quantum, -q Quantum for pre-emptive scheduling 0

−−stop-time, -t Simulation stop time (none)
−−switch-time, -w Context switch cost 0
−−no-io-faults, -n Disables I/O faults

−−verbose, -v Enable verbose output
−−batch, -b Display parseable batch output
−−help, -h Display help message

The remaining parameters are described in the process generation file. The format of the file is

ntypes
name0 c0 b0 a0 i 0

name1 c1 b1 a1 i 1

...

3



CS 330 Operating Systems Spring 2012

namentypes−1 cntypes−1 bntypes−1 antypes−1 i ntypes−1

The ntypes line specifies the number of process types to be used in the simulation. Each suc-
cessive line defines the parameters for one of those types.namej is a label for the process type,
c j is the average CPU time requirement for processes of this type, bj is the average burst time for
processes of this type,aj is the average interarrival time for processes of this type,and i j is the
average time required to service each I/O fault for processes of this type.

For example,

2
interactive 20 10 80 5
batch 500 250 1000 10

specifies two process types, one called “interactive” with average CPU service time 20, average
burst time 10, average interarrival time 80, and average I/Oservice time per fault of 5, and a second
called “batch” with average CPU service time 500, average burst time 250, average interarrival time
1000, and average I/O service time per fault of 10.

During a simulation, you will need to generate random times with a given average. For example,
you might want to generate process interarrival times that average out to 100. In order to allow
a wide range of possible values and to simulate realistic situations more accurately, use anexpo-
nential distribution of values with the given average value. This will result in a larger number of
smaller values and a smaller number of larger values. In other circumstances, it may make more
sense to use auniform distribution, where values are randomly selected within an interval. C func-
tions that provide random values for both exponential and uniform distributions are available in
˜jteresco/shared/cs330/labs/cpusched . You are welcome to use these functions or
write your own.

For each process type, use an exponential distribution to generate process interarrival times aver-
aging the given value. When generating new processes, use an exponential distribution to generate
the new process’ CPU service time and I/O service time and a uniform distribution to generate the
burst time (in the range between 1 and twice the average bursttime specified).

Statistics to Gather

The whole point of the simulation is to gather statistics to see how a given system performs over
time. You should gather and report the following statistics:

• Length of the simulation in time units and number of events processed.

• Final and average length of the event queue.

• Final and average length of the ready queue.

• For each process type:

4



CS 330 Operating Systems Spring 2012

– the number of processes of this type completed.

– the throughput (number of processes of this type completed per unit time).

– last, longest, and average turnaround times for processes of this type.

• For each CPU in the system:

– active time (time spent running jobs), context switch time,and idle time.

Report each as a raw amount of time and as a percentage of simulation time.

Program Outline

Your program’s execution should follow this approach:

read and set parameters
create an empty event queue, empty ready queue, initialize stats
insert initial process creation events into event queue
while (simulation time not expired)

take next event from event queue
process event (move job among queues or CPU, create new job,

add new events, update statistics, etc)
report statistics

Simulation Case Studies

Conduct two (three if you are in a group with three members) studies of your own choosing using
the simulator. These should involve comparisons of statistics such as CPU utilization, turnaround
times, and queue lengths, as system parameters are varied. You are encouraged to e-mail me with
your ideas to make sure they are appropriate before you go toofar.

The most meaningful statistics are collected after the system stabilizes, that is, after the system
has been under “load” for a while. The first processes to arrive enter an unloaded system and
their behavior may not be typical of long-term trends. You can wait until hundreds of processes
have entered the system before gathering statistics, or runyour simulation long enough that the
behavior of these early processes will not have a significanteffect on the long-term trends you are
studying. Choose parameters that will result in many thousands of processes passing through the
system before the simulation ends. Some combinations of parameters produce mostly meaningless
results, such as when processes arrive much more quickly than the CPU can process them. Avoid
these situations in your studies.

Implementing an appropriate−−batch output mode will make it easier for you to parse the
statistics you gather into meaningful and plottable data.

If your simulator is not finished in time to use it for this partof the assignment, you may generate
your results using mine.

5



CS 330 Operating Systems Spring 2012

Notes

• You may develop your code anywhere, but make sure it works on winterstorm or the Roger
Bacon 306 Linux systems.

• If you work in a group and want to be able to work concurrently,consider requesting a Unix
group for your files and consider keeping them in a Subversionrepository for source code
control. Whatever you do, please do not share passwords or create world-readable (or worse,
world-writeable) directories.

• Since real computer scientists don’t use Office, you are encouraged (but not required) to
generate your writeup using LATEX. Also consider usinggnuplot to generate your graphs.
Both packages are available on the lab Linux systems. There isa sample LATEX document in
my shared area on the Roger Bacon 306 Linux systems.

Simulator Submission and Evaluation

This assignment is graded out of 50 points, 40 of which are based on the simulation software.

Make sure that all group members’ names appear in all files. Only one group member should
submit. Group submissions must include a rough breakdown ofthe work done by each group
member.

By 9:20 AM, Friday, February 17, 2012, submit documented source code, with a briefREADME
file that describes how to build and run your simulator. All necessary files should be submitted by
email tojteresco@siena.edu. Include aMakefile to allow easy compilation.

Correctness, design, documentation, style, and efficiency will be considered when assigning a
grade. All files should compile without warnings when usinggcc ’s -Wall option.

Grading Breakdown

Makefile , build instructions,README 2 points
-h (help output) 1 point

Command-line parameter parsing 2 points
Basic DES setup: event queue-based processing5 points

Process generation file 3 points
CPU Scheduling simulation correctness 10 points

Gathering and reporting of statistics 5 points
Design and Style 5 points
Documentation 5 points

Simulation efficiency 2 points

6



CS 330 Operating Systems Spring 2012

Simulation Studies Submission and Evaluation

The writeup of the studies is worth 10 points.

By 10:00 AM, Tuesday, February 21, 2012, you should submit a writeup, by email tojteresco@-
siena.edu, that includes a description of each of your two (or three, for groups of three) studies.
Please submit as a PDF file. Your discussion of each study should include what you expected would
happen and what actually happened, conclusions you can drawfrom what happened, a critique of
the model, and how your studies might apply to a “real world” (OK, a “real OS”) situation. Include
graphs to show trends as the key parameter(s) change.

Both content and writing style will be considered when assigning a grade.

7


