Computer Science 330
Operating Systems
SIENAcollege siena College
Computer Science Sp”ng 2012

Programming Project 2. CPU Scheduler Simulation
Program Due: 9:20 AM, Friday, February 17, 2012
Writeup Due: 10:00 AM, Tuesday, February 21, 2012

For this project, you will be developing a simulator in C toused to study CPU scheduling. You
may work alone or in groups of 2 or 3. Collaboration within awgyas, of course, unrestricted.
You may discuss the program with members of other groupswhat you turn in must be your
own group’s work. Groups must be formed no later than Mondpruary 6, 2012, and be
confirmed by all group members by electronic maijteesco@siena.edu. All group members
will be assigned the same grade for the project.

Warning: Significant design and programming effort will be necessargomplete this project.

You may develop your programs in any environment, as longcas Ilcompile and execute your
code on either the Roger Bacon 306 Linux systems or on wintenstdf you are not yet a C

expert, this is an opportunity to become an expert. Thisrengly encouraged, but you may
choose to program in another language at the cost of a 10%typemathe programming part of

this assignment.

The case studies and writeup account for a significant paineajrade, so keep that in mind as you
plan your time. Although the programming is not due until®&M, Friday, February 17, 2012, |
recommend finishing up the code sooner to leave extra timaéowriteup.

Discrete Event Simulation

Discrete event simulation is a method used to model real world systems that can be desmtp
into a series of logicadvents that happen at specific times. The main restriction on theesyss
that an event cannot affect the outcome of a prior event. Whavent is generated, it is assigned
a timestamp, and is stored in aevent queue (a priority queue). Alogical clock is maintained
to represent the current simulation time. At any point in $imaulation, the next event to take
place is at the head of the event queue. Since nothing ititegesan happen between the current
simulation time and the time of the event at the head of thateygeue, removal of an event for
processing allows the logical clock to be incremented toehant’s timestamp. We know that we
didn’t miss anything interesting, because if something @las going to happen before that event,
an event would have been in the system that would come oueahtlnt queue before this one.

Multiple events may have the same timestamp. This modelggteat happen concurrently. Even
though the events are processed sequentially by the sonuta¢y occur at the same logical time.
It does not matter which order you process such events insiowlator.

We use this model to simulate a simple operating system.eBses arrive in the system and take
turns executing on one or more CPUSs, possibly spending songewaiting for I/O service. Each
process remains in the system until its predetermined ctatipnal needs are met. There are a

CS 330 Operating Systems Spring 2012

small number of events that can occur that will affect theesys and it is these events that drive
the simulation.

System Description

You are to design and implement a discrete event simulatoragel a CPU scheduler. You will
then use your simulator to conduct studies of the performan€PU scheduling algorithms.

Your program should implement a queueing system, as shoven he

New Process Arrival

Ready Dispatch
Queue _\ CPUs
Quantum Expiration
T
O Process
. Complete
VO Complete™ /6 Subsystem /O Fault

Processes enter the system and wait for their turn on a CPY.rliheon a CPU, possibly being
pre-empted by the scheduler or for I/O service, until theyergpent their entire service time on a
CPU, at which point they leave the system.

A logical clock is used to coordinate all events in the systim “ticks” of the clock are measured
in (arbitrary) “time units.” The total simulation time is a@meter supplied by the user.

An input file specifies the frequency and length of new proee$s be introduced into the system.
Each time a new process enters the system, an event is gahtrat will result in the creation of

the next process of the same type to enter the system. Thatfofrthe input file and the meaning
of its entries are described later in this document.

The ready queue contains the processes in the system that are ready to runCé#tUawhen no
CPU is available to run them. A process is selected from thet fob the ready queue when a
CPU becomes available. If the ready queue is empty, a proogssrg the ready state should be
assigned to any idle CPU immediately.

Each process can spend up to, but not more thangaergum on a CPU before it is switched out.
The quantum is a system wide constant value, entered as met@raby the user. Note: setting a
guantum of 0 should result in a non-preemptive scheduler.

When a process is assigned to a CPU, an event should be genbedted remove it from a CPU
at a later time.

CS 330 Operating Systems Spring 2012

1. If the time remaining for the process to complete is leas the time to the next I/O fault or
the quantum, an event is generated that will cause the moocésave the system.

2. Else, if the time remaining for the process to I/O faulg(sext item) is less than the quantum,
an event is generated that will cause the process to leavk&Xservice.

3. Else the process’ quantum will expire. An event is gemer#tat will return the process to
the ready queue.

Context switch cost is entered as a parameter by the user and should be accoonteaein gener-
ating events and gathering statistics.

A process executes for a set number of clock cycles(itst time) between each 1/O fault. This
number is constant on a per-process basis - it is determameth process when it is created, and
remains the same for the duration of the process.

The time needed to service an I/O fault is determined for @aobess, and remains constant for
the lifetime of that process. We make the unrealistic assiamghat the 1/0 subsystem can handle
an infinite number of requests at the same time with no loagrnatound time. When each process
enters 1/O service, an event is created to take place atrtieedf the service’s completion.

User-supplied Parameters

Your simulator should be controlled by a number of commane-parameters and an input file
describing the creation of new processes.

You may find thegetopt _long(3) library function useful for parsing your command-line pa-
rameters.

| Switch | Description | Default |
——procgen-file, -f File name for the process generation description fileg.txt
——num-cpus, -C Number of CPUs 1
——quantum, -q Quantum for pre-emptive scheduling 0
——stop-time, -t Simulation stop time (none)
——switch-time, -w Context switch cost 0
——no-io-faults, -n Disables 1/O faults
——verbose, -v Enable verbose output
——batch, -b Display parseable batch output
——help, -h Display help message

The remaining parameters are described in the processageneiile. The format of the file is

ntypes
name, co, by ag i
name; ¢; by a; i,

CS 330 Operating Systems Spring 2012

namentypes—l Cntypes—l bntypes—l antypes—l I ntypes—1

Thentypes line specifies the number of process types to be used in thdagion. Each suc-
cessive line defines the parameters for one of those typse; is a label for the process type,
c; is the average CPU time requirement for processes of this lyps the average burst time for
processes of this typ@,; is the average interarrival time for processes of this tgpeli ; is the
average time required to service each 1/O fault for processthis type.

For example,

2
interactive 20 10 80 5
batch 500 250 1000 10

specifies two process types, one called “interactive” withrage CPU service time 20, average
burst time 10, average interarrival time 80, and averagséi®ice time per fault of 5, and a second
called “batch” with average CPU service time 500, averagstlume 250, average interarrival time

1000, and average I/O service time per fault of 10.

During a simulation, you will need to generate random timéh & given average. For example,
you might want to generate process interarrival times thiatage out to 100. In order to allow
a wide range of possible values and to simulate realisti@sdns more accurately, use expo-
nential distribution of values with the given average value. This will result irmager number of
smaller values and a smaller number of larger values. Inr @iheumstances, it may make more
sense to useaniformdistribution, where values are randomly selected within an interval.n€{u
tions that provide random values for both exponential antbtm distributions are available in
“jteresco/shared/cs330/labs/cpusched . You are welcome to use these functions or
write your own.

For each process type, use an exponential distributionriergée process interarrival times aver-
aging the given value. When generating new processes, us@anantial distribution to generate
the new process’ CPU service time and 1/O service time andfaramdistribution to generate the
burst time (in the range between 1 and twice the average timesspecified).

Statistics to Gather

The whole point of the simulation is to gather statisticsde Bow a given system performs over
time. You should gather and report the following statistics

Length of the simulation in time units and number of eventepssed.

Final and average length of the event queue.

Final and average length of the ready queue.

For each process type:

CS 330 Operating Systems Spring 2012

— the number of processes of this type completed.
— the throughput (number of processes of this type completedpit time).
— last, longest, and average turnaround times for proce$sess dype.

e For each CPU in the system:
— active time (time spent running jobs), context switch tiaued idle time.

Report each as a raw amount of time and as a percentage of sonuime.

Program Outline

Your program’s execution should follow this approach:

read and set parameters
create an empty event queue, empty ready queue, initialize stats
insert initial process creation events into event queue
while (simulation time not expired)
take next event from event queue
process event (move job among queues or CPU, create new job,
add new events, update statistics, etc)
report statistics

Simulation Case Studies

Conduct two (three if you are in a group with three membergjistuof your own choosing using
the simulator. These should involve comparisons of stegistich as CPU utilization, turnaround
times, and queue lengths, as system parameters are vaoie@r& encouraged to e-mail me with
your ideas to make sure they are appropriate before you gatoo

The most meaningful statistics are collected after theesystabilizes, that is, after the system
has been under “load” for a while. The first processes to emnter an unloaded system and
their behavior may not be typical of long-term trends. You eait until hundreds of processes

have entered the system before gathering statistics, oyaunsimulation long enough that the

behavior of these early processes will not have a signifiediect on the long-term trends you are

studying. Choose parameters that will result in many thodsah processes passing through the
system before the simulation ends. Some combinations afipaters produce mostly meaningless
results, such as when processes arrive much more quickiyttieaCPU can process them. Avoid

these situations in your studies.

Implementing an appropriate —batch output mode will make it easier for you to parse the
statistics you gather into meaningful and plottable data.

If your simulator is not finished in time to use it for this paftthe assignment, you may generate
your results using mine.

CS 330 Operating Systems Spring 2012

Notes

e You may develop your code anywhere, but make sure it worksiotevgtorm or the Roger
Bacon 306 Linux systems.

¢ If you work in a group and want to be able to work concurrerdynsider requesting a Unix
group for your files and consider keeping them in a Subvensgpnsitory for source code
control. Whatever you do, please do not share passwordsaieaserld-readable (or worse,
world-writeable) directories.

e Since real computer scientists don’t use Office, you are waged (but not required) to
generate your writeup usingTEX. Also consider usinginuplot to generate your graphs.
Both packages are available on the lab Linux systems. ThareaspleAIEX document in
my shared area on the Roger Bacon 306 Linux systems.

Simulator Submission and Evaluation
This assignment is graded out of 50 points, 40 of which aredbas the simulation software.

Make sure that all group members’ names appear in all filesly Gme group member should
submit. Group submissions must include a rough breakdowhefvork done by each group
member.

By 9:20 AM, Friday, February 17, 2012, submit documented @®wode, with a brieREADME
file that describes how to build and run your simulator. Alkessary files should be submitted by
email tojteresco@siena.edu. Include aMakefile to allow easy compilation.

Correctness, design, documentation, style, and efficienltybes considered when assigning a
grade. All files should compile without warnings when usgeg ’'s -Wall option.

| Grading Breakdown |

Makefile , build instructionsREADME 2 points

-h (help output) 1 point
Command-line parameter parsing 2 points

Basic DES setup: event queue-based processiagoints
Process generation file 3 points
CPU Scheduling simulation correctness | 10 points
Gathering and reporting of statistics 5 points
Design and Style 5 points
Documentation 5 points

Simulation efficiency 2 points

CS 330 Operating Systems Spring 2012

Simulation Studies Submission and Evaluation
The writeup of the studies is worth 10 points.

By 10:00 AM, Tuesday, February 21, 2012, you should submitieeup, by email tgteresco@-
siena.edu, that includes a description of each of your two (or three gimups of three) studies.
Please submit as a PDF file. Your discussion of each studydshmlude what you expected would
happen and what actually happened, conclusions you canfdvavwwhat happened, a critique of
the model, and how your studies might apply to a “real worldK(a “real OS”) situation. Include
graphs to show trends as the key parameter(s) change.

Both content and writing style will be considered when assigma grade.

