
Computer Science 330
Operating Systems
Siena University
Fall 2025

Topic Notes: Memory Management

Memory is one of the major shared resources in any modern computer system. A program needs
access to the CPU and space in memory for its instructions and data in order to run.

Think of a simple program that does some operations like this:

x = x + 1;

// stuff

do {

// stuff
while (i!=0);

This becomes assembly code that looks something like this:

LOAD X, R0
INC R0
STOR R0, X

and

loopstart:
...
! assuming i is in R1
TEST R1
BNE loopstart

Somewhere in memory, there is program text corresponding to these statements and variables.

How does the program know how to find the memory location corresponding to variable x? How
does the BNE instruction know where to jump to?

Binding to Memory
When does an instruction or a variable get assigned an actual memory address? There are three
possible times:



CSIS 330 Operating Systems Fall 2025

1. Programming or Compile time: If we can know the actual memory location a priori, absolute
code can be generated. The downside is that we must rewrite or recompile code if its starting
location changes.

This might be used on small systems.

• Microprocessors might do this.

• The old DOS .com format programs used this.

• Programs for things like the Commodore 64 used this.

For example, a BASIC program on the Commodore 64 could include the statements

10 POKE 1320, 1
20 POKE 55592, 6

This puts character ’A’ near the middle of the top of the screen, then changes its color to
blue. (See Appendix D of the Commodore 64 Programmer’s Reference Guide)

We could also see the current status of joystick 1:

10 JV=PEEK(56320)

Bits correspond to the 4 directions and the fire button status.

A program could also decide to POKE and PEEK values anywhere into memory.

This will not work on a multiprogrammed system, unless each program is compiled to have
disjoint memory usage, but the idea lives on in small devices today.

2. Load time: Must generate relocatable code if memory location is not known at compile time.

Medium/larger systems may do this. The physical address for a variable or an instruction
(branch target) is computed when the program is loaded into memory.

Once the program has been loaded into a section of memory, it cannot move. If it is removed
from memory, it must be returned to the original location.

Multiprogramming is possible, and we will consider the issues this brings up for memory
management.

3. Execution time: Binding must be delayed until run time if the process can be moved during
its execution from one memory segment to another. Need hardware support for address maps
(e.g., base and limit registers).

This is also used for modern medium and large systems. A program’s data and instructions
can be moved around in memory at run time.

This allows dynamic loading and/or dynamic linking. Here, a segment of program code is
not brought into memory until it is needed.

2



CSIS 330 Operating Systems Fall 2025

Logical vs. Physical Address Space
A logical address is one generated by the CPU (your program); and is also referred to as virtual
address.

A physical address is the one seen by the memory unit.

These are the same in compile-time and load-time address-binding schemes; they differ in execution-
time address-binding scheme.

The Memory-Management Unit (MMU) is a hardware device that maps virtual to physical address.
In a simple MMU scheme, the value in the relocation register is added to every address generated
by a user process at the time it is sent to memory.

The user program deals with logical addresses; it never sees the real physical addresses.

If multiple processes are going to be in memory, we need to make sure that processes cannot
interfere with each others’ memory. Each memory management scheme we consider must provide
for some form of memory protection.

Swapping
In a multiprogrammed system, there may not be enough memory to have all processes that are in
the system in memory at once. If this is the case, programs must be brought into memory when
they are selected to run on the CPU. This is where medium-term scheduling comes in.

Swapping is when a process is moved from main memory to the backing store, then brought back
into memory later for continued execution.

The backing store is usually a disk, which does have space to hold memory images for all processes.

Swapping time is dominated by transfer time of this backing store, which is directly proportional
to the amount of memory swapped.

swap in P3

OS

memory backing store

Proc 1

Proc 2

Proc 3

Proc 4

swap out P1

The short-term scheduler can only choose among the processes in memory. So to keep the CPU
as busy as possible, we would like a number of processes in memory. Assuming than an entire

3



CSIS 330 Operating Systems Fall 2025

process must be in memory (not a valid assumption when we add virtual memory), how can we
allocate the available memory among the processes?

Contiguous Allocation
If all processes are the same size (not likely!), we could divide up the available memory into chunks
of that size, and swap processes in and out of these chunks. In reality, they are different sizes.

For the moment, we will assume that each process may have a different size, but that its size is
fixed throughout its lifetime. Processes are allocated chunks of contiguous memory of various
sizes.

When a process arrives (or is swapped in) it is allocated an available chunk (a “hole”) large enough
to hold it. The system needs to remember what memory is allocated and what memory is free.

80

0

20

40

200

160

OS

P7

P3

P1

0

20

40

200

160

OS

P7

FREE

P1

0

20

40

200

160

OS

P7

P1

P6

FREE

80

0

20

40

200

160

OS

P1

P6

FREE

FREE

What hardware support is needed to support this relocation?

CPU’s logical address is first checked for legality (limit register) to ensure that it will be mapped
into this process’ physical address space, then it is added to an offset (relocation or base register)
to get the physical address. If the program is reloaded into a different portion of memory later, the
same logical addresses remain valid, but the base register will change.

4



CSIS 330 Operating Systems Fall 2025

How do we decide which “hole” to use when a process is added? We may have several available
holes to choose from, and it may be advantageous to choose one over another.

• First-fit: choose the first hole we find that is large enough. This is fast, minimizing the
search.

• Best-fit: Allocate the smallest available hole that is large enough to work. A search is needed.
The search may be shortened by maintaining the list of holes ordered by size.

• Worst-fit: Allocate the largest hole. This is counterintuitive, but may be reasonable. It
produces the largest leftover hole. However, in practice it performs worse.

Fragmentation
The problem with any of these is that once a number of processes have come and gone, we may
have shredded up our memory into a bunch of small holes, each of which alone may be too small to
be of much use, but could be significant when considered together. This is known as fragmentation.

• External fragmentation: total memory space exists to satisfy a request, but it is not contiugu-
ous. For example: 3 holes of size 20 are available, but a process cannot be allocated because
it requires 30.

• Internal fragmentation: this occurs when the size of all memory requests are rounded up
to the next multiple of some convenient size, say 4K. So if a process needs 7K, it needs to
round up to 8K, and the 1K extra is wasted space. The cost may be worthwhile, as this could
decrease external fragmentation.

External fragmentation can be reduced by compaction – shuffling of allocated memory around
to turn the small holes into one big chunk of available memory. This can be done, assuming
relocatable code, but it is expensive!

Contiguous allocation will not be sufficient for most real systems.

More Advanced Approaches
Contiguous allocation is unlikely to work in most environments. The most common approaches
used today are paging, segmentation, or a combination of these.

In each case, we break down the logical address space for a process into smaller chunks. It is these
chunks that we assign to parts of physical memory rather than the whole process.

With paging, we break up memory into fixed-size chunks. With segmentation, we break up mem-
ory into pieces whose size corresponds to some logical memory division of the program, such as a
block of global variables, the program text for a particular function, etc.

5



CSIS 330 Operating Systems Fall 2025

Paging
We can do better if we allow a process’ logical memory to be noncontiguous in physical memory.
An approach that breaks up memory into fixed-size chunks is called paging.

The size of the chunks is called the page size, typically a power of 2 around 4K. We break up both
our logical memory and physical memory into chunks of this size. The logical memory chunks are
called pages and the physical memory chunks are called frames.

The system keeps track of the free frames of physical memory, and when a program of size n pages
is to be loaded, n free frames must be located.

We can create a virtual memory which is larger than our physical memory by extending the idea of
process swapping to allow swapping of individual pages. This allows only part of a process to be
in memory at a time, and in fact allows programs to access a logical memory that is larger than the
entire physical memory of the system.

(pages)

physical

memory

(frames)

logical

memory

Fragmentation: we have no external fragmentation, but we do have internal fragmentation.

The contiguous allocation scheme required only a pair of registers, the base/relocation register
and the limit register to translate logical addresses to physical addresses and to provide access
restrictions. For paging, we need something more complicated. A page table is needed to translate
logical to physical addresses.

6



CSIS 330 Operating Systems Fall 2025

A page table is maintained for each process, and is maintained in main memory (in its most
straightforward implementation).

A page table base register can be used to locate the page table in memory, page-table length register
to determine its size.

It is possible that not all of a process’ pages are in memory, but we will not consider that just yet.

Logical addresses are broken into:

• A page number, p, which is the index into the page table

• A page offset, d, which is added to the base address of the physical memory frame that holds
logical page p

7



CSIS 330 Operating Systems Fall 2025

If a page moves to a different frame, we don’t have to “tell” the program – just update the page
table and the same logical addresses will work.

The number of bits of the address that make up p and d are determined by the page/frame size. The
size is always a power of 2, and a k-bit page offset size indicates a page size of 2k. The remaining
bits of the logical address determine how many pages of logical memory can be addressed by a
process. If there are j bits in the page number, then there are 2j addressable pages.

Disadvantage: every data/instruction access now requires two memory accesses: one for the page
table and one for the data/instruction. This is unacceptable! Memory access is slow compared to
operations on registers!

The two memory access problem can be solved with hardware support, possibly by using a fast-
lookup hardware cache called associative memory or translation look-aside buffers (TLBs)

The TLB is an associative memory – a piece of hardware that lets us search all entries for a line
whose page number is p. If it’s there, we get our frame number f out without a memory access to
do a page table lookup. Since this is relatively expensive hardware, it will not be large enough to
hold all page table entries, only those we’ve accessed in the recent past. If we try to access a page
that is not in the TLB, we go to the page table and look up the frame number. At this point, the
page is moved into the TLB so if we look it up again in the near future, we can avoid the memory
access.

Fortunately, even if the TLB is significantly smaller than the page table, we are likely to get a good
number of TLB “hits”. This is because of locality – the fact that programs tend to reuse the same
pages of logical memory repeatedly before moving on to some other group of pages. This idea
will come up a lot for the rest of the semester. But here, it means that if the TLB is large enough
to hold 1

3
of the page table entries, we will get much, much more than a 1

3
hit rate on the TLB.

TLB hit is still more expensive than a direct memory access (no paging at all) but much better than
the two references from before.

8



CSIS 330 Operating Systems Fall 2025

A TLB is typically around 64 entries. Tiny, but good enough to get a good hit rate in practice.

TLB management could be entirely in the MMU, but often (on RISC systems like Sparc, MIPS,
Alpha) the management is done in software. A TLB miss is trapped to the OS to choose a TLB
victim and get the new page table entry into the TLB.

On the Intel Pentium 4 1.4 GHz (I know, ancient): 128 entries in intstruction TLB, 64 entries in data
TLB. ITLB replacement takes 31 cycles, DTLB takes 48 cycles. TLBs are fully associative and
use LRU replacement. (document formerly at: http://i30www.ira.uka.de/research/
documents/l4ka/smallspaces.pdf)

Multilevel Page Tables
We said earlier that the page table must be kept in main memory. With a large page table, this
could end up taking a significant chunk of memory.

For a 32-bit address space (232 bytes) and a frame size of 4KB (212). This leaves about 1 million
page table entries (220). So we use up 4 MB of memory just to hold the page table.

A solution to this is to page the page table! For a two-level paging scheme, we break up our logical
address into three chunks: an index into the outer page table p1, a displacement in the outer page
table p2 to find the actual frame, and a page offset d.

PTBR

P1 P2 d

10 10 12

find inner page table frame at offset P1

find actual frame number at offset P2

find actual value in memory at displacement d

This means our address translation is now more complex:

9



CSIS 330 Operating Systems Fall 2025

Note that we now have 3 memory accesses to do one real memory access! We’ll need hardware
support here, too.

This can be expanded to 3 or 4 levels.

This approach has been taken with some real systems: VAX/VMS uses 2 levels, Sparc uses 3
levels, and the 68030 uses 4 levels.

Think of this like a phone book (with numbers as keys to names). You don’t want a big phone
book with all phone numbers. You have one book which lists all area codes and tells you where
to find another book with that area code. Then you find that book which lists exchanges and tells
you where to find the phone book for that exchange. Finally, you look in that book for the actual
numbers and find the names.

We’ll really need a very high TLB hit rate to be able to make use of multilevel paging and still
have reasonable performance.

If a 64-bit system wanted to use this scheme, it would take about 7 levels to get page tables down
to a reasonable size. This alone is not good enough, so other approaches are needed.

Inverted Page Table
Here, we have one entry for each real page of memory, and the page table lists the pid and logical
page.

An entry consists of the virtual address of the page stored in that real memory location, with
information about the process that owns that page.

This decreases memory needed to store each page table, but increases time needed to search the
table when a page reference occurs.

A hash table can limit the search to one or at most a few page-table entries.

The extra memory accesses required for hash-table searches are alleviated by a TLB.

10



CSIS 330 Operating Systems Fall 2025

Note that there is one page table shared among all processes. The PID must be part of the logical
address.

Memory Protection with Paging
Memory protection with a paging scheme is not as simple as a base/limit pair of registers.

We need to know which process owns each physical memory frame, and ensure that page table
lookups for a given process can produce only physical addresses that contain that process’ data.

Not all parts of the process’ logical address space will actually have a physical frame assigned to
them. So page table entries can be given an extra “valid-invalid” bit:

11



CSIS 330 Operating Systems Fall 2025

Shared Pages
Processes may be able to share code frames, and processes may wish to share memory.

• Shared code – Only one copy of read-only (reentrant) code shared among processes (i.e.,
text editors, compilers, window systems). Such shared code must appear in same location in
the logical address space of all processes.

• Private code and data – Each process keeps a separate copy of the code and data. The pages
for the private code and data can appear anywhere in the logical address space.

Complications:

• If a page moves, all processes sharing that page must be aware of it.

• A frame is not available for reuse until all processes that are using it no longer want it.

12



CSIS 330 Operating Systems Fall 2025

Demand Paging
Recall that virtual memory allows the use of a backing store (a disk) to hold pages of process’
logical address space that are not currently in use.

Large, slow, cheap

Regs

Cache

Main Memory

Disk/Virtual Memory

Tape, Remote Access, etc.

Small, fast, expensive

Earlier we talked about moving entire processes between virtual memory and main memory. How-
ever, when combined with a paging scheme, we can swap individual pages. This is desirable since
relatively small parts of a program text and variables are active at any given time (or possibly,
ever).

• Bring pages into memory only when needed

– Less I/O needed (disk access to read pages)

13



CSIS 330 Operating Systems Fall 2025

– Less memory needed (physical)

– Faster response (less I/O, copying to activate a process)

– More users (more frames to go around)

• We know that a page is needed when there is a reference to it

This can be implemented with the valid-invalid bits of a page table that we saw earlier.

In the figure, logical pages A-F have been allocated by the process, while G and H are part of the
logical address space but have not yet been allocated. A, C, and F, have valid page table entries,
while the others do not.

If a page lookup hits a page table entry marked as invalid, we need to bring that page in. This is
called a page fault.

A page fault causes a trap to the OS.

• invalid reference −→ abort

• valid, but not-in-memory −→ bring to memory

If the reference is valid, the system must

• get an empty frame

14



CSIS 330 Operating Systems Fall 2025

• swap the page from virtual memory into the frame

• update the page table, set the status to valid

• restart the process

But what happens if there is no free frame? We need to make one!

Page Replacement
To do this, we need to take one of the frames and swap it out – send it back to the disk.

Ideally, we would like to select a frame to remove (a “victim”) that is no longer in active use by
any process. We will examine some algorithms that attempt to do just this. If the victim is needed
again, a page fault will be generated when it is referenced and it will be brought back in.

The percentage of memory accesses that generate a page fault is called the page fault rate. 0.0 ≤
p ≤ 1.0 A rate of 0 means there are no page faults, 1 means every reference generates a page fault.

Given a page fault rate p, memory access cost tma, and a page fault overhead tpf , we can compute
an effective access time:

EAT = (1− p)× tma + p× tpf

tpf includes all costs of page faults, which are time to trap to the system, time to select a victim,
time to swap out the page, time to swap in the referenced page, and time to restart the process.

The page being swapped out needs to be written back to disk only if it has been modified (often
referred to as a “dirty” page). If the page has not been modified since we brought it into main
memory, we may be able to skip this step. This, however, depends on the implementation.

15



CSIS 330 Operating Systems Fall 2025

For example, suppose a memory access takes 1 µs, trap to the system and selection of a victim
takes 50 µs, swapping in or out a page takes 10 ms (= 10000µs), and restarting the process takes
50 µs. Also, suppose that the page being replaced has been modified 50% of the time, so half of
the page faults require both a page write and a page read.

tpf = 50 + 5000 + 10000 + 50 = 15100
EAT = (1− p)× tma + p× tpf = (1− p)× 1 + p× 15100 = 1 + 15099p

If p = .5, this is pretty horrendous. Our demand paging system has made the average memory
access 7500 times slower! So in reality, p must be very small. Fortunately, our friend locality of
reference helps us out here again. Real programs will have a low page fault rate, giving reasonable
effective access times.

Appropriate selection of the victim can make a big difference here. It may be worthwhile to take
more time to select a victim more carefully if it will lower p, and in turn, EAT .

To reduce the page fault rate, we should select victims that will not be used for the longest time
into the future.

Page Replacement Algorithms
We were discussing memory management in paged systems.

Much like what we did to compare CPU scheduling algorithms, we will evaluate page replacement
algorithms by running them on a particular string of memory references (reference string) and
computing the number of page faults on that string. The string indicates the logical pages that
contain successive memory accesses. We count the number of page faults needed to process the
string using the given algorithm.

In all our examples, the reference string is 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.

We know that there must be a minimum of 5 page faults here, as 5 different pages are referenced.
If we have 5 frames available, that is all we’ll ever have. So we consider cases where we have 3 or
4 frames available, just to make it (slightly) interesting.

First-In-First-Out (FIFO) Algorithm
You guessed it – the first page in is the first page out when it comes time to kick someone out.

If we have 3 frames available:

4

1

2

3

1

2

3

4

1

2

5

3

16



CSIS 330 Operating Systems Fall 2025

This produces a total of 9 page faults. Let’s add a frame.

4 frames:

5

1

2

3

4

1

2

3

4

5 4

2

3

1

We got 10 page faults! This is very counterintuituve. We would expect that adding available
memory would make page faults occur less frequently, not more. Usually, that is the case, but we
have here an example of Belady’s Anomaly. Here, adding an extra frame caused more page faults.

FIFO replacement is nice and simple – we know our victim immediately. However, it may produce
a large number of page faults given an unfortunate reference string.

Optimal Algorithm (OPT)
We can’t do better than replacing the page that will not be used for longest period of time in the
future, so let’s consider that.

4 frames example:

5

1

2

3

4

1

2

3

4

4

6 page faults.

Problem: we can’t predict the future, at least not very accurately.

So it’s not practical, but it is useful to see the best we can do as a baseline for comparison of other
algorithms.

Least Recently Used (LRU) Algorithm
Select the frame that we have not used for the longest time in the past.

17



CSIS 330 Operating Systems Fall 2025

4

1

2

3

4

1

2

3

4

5

3

5

8 page faults. So we did better than FIFO here, but it’s not optimal.

This one can actually be used in practice.

It can be implemented directly by maintaining a timestamp that gets updated each time a frame is
accessed. Then when a replacement decision is needed, the one with the the oldest time stamp is
selected.

This is expensive in terms of having to update these timestamps on every reference, and involves a
linear search when a victim is being selected.

A stack-like implementation can eliminate the search. When a page is referenced, it moves to the
top of the stack. A doubly-linked list can be used to make this possible:

ref 4

5

3

4

7

4

5

3

7

MRU

LRU

This requires 6 pointer updates each time a page is referenced that was not the most recently used.
This is still expensive, and would require hardware support to be used in practice.

LRU Approximation Algorithms
LRU is a desirable algorithm to use, but it is expensive to implement directly. It is often approxi-
mated.

If we have one reference bit available, we can do a second-chance or clock replacement algorithm.

Here, we treat our collection of frames as a circular list. Each has a reference bit, initially set to
0. It is set to 1 any time the page is referenced. There is also a pointer into this list (the hand of a
clock, hence the name) that points to the next candidate frame for a page replacement.

When a page replacement is needed, the frame pointed to is considered as a candidate. If its
reference bit is 0, it is selected. If its bit is 1, the bit is set to 0, and the pointer is incremented to

18



CSIS 330 Operating Systems Fall 2025

examine the next frame. This continues until a frame is found with a reference bit of 0. This may
require that all frames be examined, bringing us around to the one we started with. In practice, this
is unlikely.

It is called a second chance algorithm, as after a frame has had its reference bit set to 0, it has a
second chance – if it is referenced before the pointer makes its way back around again, it will not
be removed. Thus, frequently-used pages are unlikely to become victims.

Second-chance/clock does not do well with our running example.

4

0

1

2

3

0

00

0

0

1

2

3

0

10

0

1 5 4

2

1

5

3 2

3

10 page faults! We ran into the same unfortunate victim selection that we saw with FIFO with 4
frames. We need a larger example to see the benefit.

4

00

1

0

1

1

1
0

6

12

313

2

7

5 8

10

1

0

1

0
0

6

4

313

2

7

5 8 0

ref

Pages 8 and 6 get their second chance, and may be referenced before the clock makes its way
around again.

An enhancement to the clock algorithm called Gold’s Clock Algorithm uses a second bit – a “dirty”
bit in addition to the reference bit. The dirty bit keeps track of whether the page had been modified.
Pages that had been modified are more expensive to swap out than ones that have not, so this one
gives modified pages a better chance to stick around. This is a worthy goal, though it does add
some complexity.

Counting Algorithms
One more group of algorithms to consider are those that keep track of the number of references
that have been made to each page.

19



CSIS 330 Operating Systems Fall 2025

• Least-frequently used (LFU): replaces page with smallest count. We haven’t used it much,
so maybe that means we never will.

• Most-frequently used (MFU): based on the argument that the page with the smallest count
was probably just brought in and has yet to be used.

It is not clear which approach is better. LFU would need to be combined with some sort of aging
to make sure a page that is used a lot early on, getting a big count, can still leave eventually when
its usage stops.

Implementations of these suffer from the same problems that the direct LRU approaches do.
They’re either too expensive because of needed hardware support or too expensive because of
the searching needed to determine the MFU or LFU page.

Allocation of Frames
So far, we have considered how to assign pages of a process’ logical memory to a fixed set of
allocated frames (local replacement). We also need to decide how many frames to allocate to each
process. It is also possible to select the victim from a frame currently allocated to another process
(global replacement).

Each process needs a certain minimum number of pages.

• pages for instructions

• pages for local data

• pages for global data

Allocation may be fixed:

• equal allocation – p processes share m frames, m
p

each

• proportional allocation – processes that have more logical memory get more frames

• priority allocation – high priority processes get more frames

Thrashing
Thrashing occurs when a process does not have “enough” frames allocated to store the pages it
uses repeatedly. In this situation, the page fault rate will be very high.

Since thrashing leads to low CPU utilization (all processes are in I/O wait frequently having page
faults serviced), the operating system’s medium or long term scheduler may step in, detect this and
increase the degree of multiprogramming.

20



CSIS 330 Operating Systems Fall 2025

With another process in the system, there are fewer frames to go around, and the problem most
likely just gets worse.

Paging works because of locality of reference – a process access clusters of memory for a while
before moving on to the next cluster. For reasonable performance, a process needs enough frames
to store its current locality.

Thrashing occurs when the combined localities of all processes exceed the capacity of memory.

Working-Set Model
We want to determine the size of a process’ locality to determine how many frames it should be
allocated. To do this, we compute the set of logical pages the process has referenced “recently”.
This is called the working set of the process.

We define “recently” as a given number of page references in the process’ history. This number is
called the working set window is usually denoted ∆.

The working set will vary over time.

The appropriate selection of ∆ allows us to approximate the working set size, WSSi, of process
Pi. If ∆ is too small, WSSi will not encompass the entire locality. If ∆ is too large, pages will
remain in the locality too long. As ∆ increases, WSSi grows to encompass the entire program.

The total demand for frames in the system is D = ΣWSSi.

Thrashing by at least one process is likely when D > m, where m is the number of frames. If the
system detects that D > m, then it may be appropriate to suspend one or more processes.

For the reference string is 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5, with ∆ = 4, the working set grows to
{1,2,3,4} by time 4, but note that at time 8, it contains {1,2,5}.

Tracking the working set exactly for a given ∆ is expensive and requires hardware support to hold
the time stamps of the most recent access to each page. See the text for details of how to do this.

Windows NT and Solaris both use variations on the working set model.

Program Structure

21



CSIS 330 Operating Systems Fall 2025

We have stated that programs exhibit locality of reference, even if the programmer made no real
effort to encourage it. But program structure can affect performance of a paging scheme (as well
as the effectiveness of other levels of the memory hierarchy).

Consider a program that operates on a two-dimensional array:

int A[][] = new int[1024][1024]

and the system has a page size of 4KB. This means 1024 ints fit in one page, or one page for
each row of our matrix A.

Program 1:

for (j=0; j<1024; j++)
for (i=0; i<1024; i++)

A[i][j] = 0;

Program 2:

for (i=0; i<1024; i++)
for (j=0; j<1024; j++)

A[i][j] = 0;

Assume a fixed allocation of 10 frames for this process. Program 1 generates 1024 × 1024 page
faults, while Program 2 only generates 1024.

Segmentation
Another possible memory management scheme, sort of a hybrid of contiguous allocation and pag-
ing, is called segmentation.

Memory is allocated for a process as a collection of segments. These segments correspond to
logical units of memory in use by a process:

• main program

• procedure, function, method

• object, local variables

• global variables

• common block (Fortran)

• stack

22



CSIS 330 Operating Systems Fall 2025

• heap space

This can be thought of as a finer grained approach to contiguous allocation – smaller contiguous
chunks, corresponding to these logical units – are scattered throughout memory.

physical memory

S3:call
stack

S1: main

S4:globals

S2:printf

function

S1: main

S4:globals

S2:printf

function

S3:call
stack

user space

With segmentation, a logical address consists of an ordered pair: (segment-number, offset)

A segment table contains two entries for each segment:

• base – the starting physical address where the segment resides in memory

• limit – the length of the segment

23



CSIS 330 Operating Systems Fall 2025

Two registers locate the segment table in memory:

• Segment-table base register (STBR) points to the segment table’s location in memory

• Segment-table length register (STLR) indicates number of segments used by a program;
segment number s is legal if s < STLR.

With segmentation, segments may be relocated by moving the segment and updating the segment
table. The segment number, and hence the logical addresses, remain the same.

Segment sharing is straightforward, as long as each process use the same segment number. This is
required because the code in a segment uses addresses in the (segment-number, offset) format.

Allocation for the segments uses the same techniques as contiguous allocation (first-fit, best-fit),
but since the chunks are smaller, there is less likelihood of some of the problems arising, though
external fragmentation is there.

Intel Pentium Memory Management
Both paging and segmentation are actually used. In fact, many systems combine them. See the
text for how they are combined in the Intel Pentium architecture.

The Pentium supports up to 16K segments, each with up to 232 bytes of virtual address space.

The CPU generates a logical address, which is given to the segmentation unit. This produces
a linear address. The linear address is given to the paging unit, which (finally) generates the
physical address in main memory.

24



CSIS 330 Operating Systems Fall 2025

An OS running on a Pentium can choose to use only segmentation, only paging, or both.

Many modern systems use only the paging model, where each process can have a single segment
of 232 bytes.

Segment descriptors are stored in two tables, each of which can hold up to 8K segments:

• Local Descriptor Table (LDT) – one per process, private to the process, describes each pro-
gram’s code, data, stack, etc.

• Global Descriptor Table (GDT) – shared by all programs, describes system segments, in-
cluding those for the OS

To access a segment:

• load a segment selector into a segment register

– system has 6 segment registers, most important are CS – code segment, and DS – data
segment

– each selector is 16 bits: 13 bits form an index, 1 bit to select GDT(0) or LDT(1), 2 bits
for a privilege level (0-3)

• this refers to an entry in the GDT ot LDT – which is itself an 8-byte value:

– 32 bits base address, 20 bits for limit, 1 bit to determine 16- or 32-bit segment

25



CSIS 330 Operating Systems Fall 2025

The linear address is then converted by the paging unit into a physical address.

Page sizes can be either 4 KB or 4 MB. With a 4 KB page size, a 2-level page table is used. With
a 4 MB page size, a straightforward page table is used.

Much more detail is available in chapter 3 of Intel 64 and IA-32 Architecture Software Developer’s
Manual, linked from the lecture page.

What’s the Right Answer?
How might we compare strategies?

• how much hardware support is needed or available

• performance – more complexity = slower

• fragmentation?

• relocation – do we need dynamic binding?

• swapping – does it have to go back to the same place? Swap the whole thing?

• sharing segments/pages

• protection – need to ensure safe access

26



CSIS 330 Operating Systems Fall 2025

Error Detection and Correction
You have probably heard about error correcting memory. This is a memory circuit that can still
give the correct answer even if a bit has mistakenly been changed. This could happen from a bad
gate in a flip-flop, for example.

In order to do any kind of error correction, we need to build in some redundancy.

We can detect a single-bit memory error by adding a parity bit. The parity bit is set to tell whether
the original value in memory has an odd or even number of bits set to 1. If we later read the value
from memory and the parity bit no longer accurately reflects the odd/evenness of the number of
bits set to 1, we know something has gone wrong.

For example, if we have an 8-bit data value and we want to maintain even parity, we add a 9th bit
that makes the total number of bits that are set an even number:

byte even parity bit
00000000 0
00000001 1
01110100 0
11000111 1
11111111 0

From this, we can check, each time we retrieve a byte, that is has even paity. If not, we know that
something is wrong.

But that’s all it tells us. Since we don’t know which of the 9 bits are wrong, we can’t fix it.

Some of you may have had computers that crash with a Blue Screen of Death saying that a memory
parity error was detected.

This is not just a Windows phenomenon - I have had Unix systems crash with a kernel error that
a memory parity error was detected. The idea is that since we know there was a memory error
but we don’t know how to fix it, it’s better to halt the system rather than risk producing incorrect
results.

To both detect and fix an error, we will need to store more extra bits.

We consider here an error correction scheme that can fix a single bit error but at the expense of 4
extra bits for each byte of memory (50% overhead).

We use 12 bits to represent an 8-bit value. We number the bits 12-1 and use the ones whose
numbers are powers of 2 as parity bits:

12 11 10 9 8 7 6 5 4 3 2 1
1100 1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001

We use the parity bits as follows:

1. Position 1 stores the even parity of odd-numbered bits

27



CSIS 330 Operating Systems Fall 2025

2. Position 2 stores the even parity of bits whose number has the 2’s bit set

3. Position 4 stores the even parity of bits whose number has the 4’s bit set

4. Position 8 stores the even parity of bits whose number has the 8’s bit set

So to store the value 94 = 01011110 we first fill in the data bits:

0 1 0 1 1 1 1 0
1100 1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001

Position 1 stores the even parity of the bits at 3, 5, 7, 9, 11. 4 of those are set to 1, so we set that
bit to 0.

Position 2 stores the even parity of the bits at 3, 6, 7, 10, 11. 3 of those are set to 1, so we set that
bit to 1.

Position 4 stores the even parity of the bits at 5, 6, 7, 12. 3 of those are set to 1, so we set that bit
to 1.

Position 8 stores the even parity of the bits at 9, 10, 11, 12. 2 of these are set to 1, so we set that
bit to 0.

0 1 0 1 0 1 1 1 1 0 1 0
1100 1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001

When we retrieve a value from memory, we can make sure it’s OK by computing the 4 parity bits
and comparing to the stored parity bits.

If they all match, we’re OK.

If there’s any mismatch, we know there’s an error.

Let’s introduce an error into our stored value. We’ll change the third bit to a 1.

0 1 1 1 0 1 1 1 1 0 1 0
1100 1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001

So we recompute the parity bits on the value we retrieved, and compare to the stored bits:

bit computed stored match
P1 0 0 0
P2 0 1 1
P4 1 1 0
P8 1 0 1

We can quickly detect the mismatches in P2 and P8 (hey! XOR!).

This means that the bit at position 1010 has an error and must be flipped. Convenient!

Think about how this might be implemented

• the memory itself doesn’t even need to know

28



CSIS 330 Operating Systems Fall 2025

• we can drop in some XORs to generate parity bits to be stored in memory

• we XOR again to regenerate parity bits for retrieved values

• still more XOR to do correction

This works even if the parity bit is the one that has an error. It just ends up “fixing” the parity bit.

It does not work for 2-bit errors.

29


