Computer Science 330

BSIENA Operaing Systems

COMPUTER SCIENCE Fall 2025

Topic Notes: File Systems

Persistent Storage

Recall that main memory is volatile — it loses its contents when the computer is shut off. It is also
limited in size. Larger persistent storage devices are used for longer term storage and to hold data
that is too large to fit entirely in main memory.

Persistent storage has taken many forms over the years:

 Paper: cards and tape with holes punched

* Magnetic tape

Magnetic film on plastic (floppy disks)

Magnetic film on metal (hard disks)

Holes burned in metal film (CD/DVD optical disks)

* Quantum tunneling (flash memory)

We next look a bit more closely at the last three, which are the most common in use today.

Magnetic Hard Disks

Hard disks have been the standard persistent storage device in most computers for many years.

We’ll concentrate on magnetic disks (floppy disk, hard disk). A hard disk may have multiple
surfaces, or platters.

A read/write head (an armature) is needed for each platter. The platter has a magnetic film that
holds the data. Each bit of data requires a magnetic particle that can be oriented by the read/write
head when the bit is written, and whose orientation can be detected by the read/write head when
the data is read.

The data on a disk is arranged in concentric rings called cylinders or tracks.

Each cylinder of the disk is divided into chunks called sectors that contain blocks, the minimum
allocatable and addressable unit on the disk. Since there is more space on the outside of the disk,
there may be more blocks in outer cylinders than there are on inner cylinders.

CSIS 330 Operating Systems Fall 2025

The particular configuration of cylinders, sectors and the number of platters is the drive geometry.

So to read or write data on the disk, a cylinder and sector must be specified. The read/write
head must be positioned over the desired cylinder and sector. The read/write heads are typically
connected to the end of a moveable arm. This arm is moved to position the head at the correct
cylinder. When the disk rotates and the desired sector reaches the read-write head, the read or
write operation can proceed.

The speed of this operation depends on two major factors:

* seek time — the time it takes to move the read/write head to the correct cylinder

* rotational latency — the time it takes for the correct sector to rotate under the read/write head

Typical platter rotational speeds are 5400, 7200, but some can be as high as 15,000 RPM.

Access times are measured in milliseconds. Given that CPU operations are measured in picosec-
onds, disk access is incredibly slow by comparison.

We can minimize seek time by minimizing the distance the read/write head has to move in order
to service the incoming requests.

Typical capacities are now measured in hundreds of gigabytes to several terabytes.

Optical Data Storage

Compact Disc (CD) and Digital Video Disc (DVD) storage is also very common in modern com-
puters.

An optical storage media like a CD or a DVD is simply a rotating plastic disc with metal film on
it.

Unlike hard disks, where the data is arranged in concentric cylinders on the disk, optical storage
organizes the data in a continuous spiral (like a vinyl record).

The bits in this case are stored as flats (or lands) and holes (or pits) which are burned into the metal
film. A laser (780 nm wavelength for a CD) on a armature bounces off of these lands and pits to
read the bits.

A CD has a data capacity of 650 to 900 MB.

A DVD uses a 650 nm laser and a Blu Ray a 405 nm laser, which means the pits can be smaller.
Data capacities for a DVD are 8+ GB. A dual-layer Blu Ray data disc can hold 50 GB of data.

Access times are in the range of hundreds of milliseconds.

Flash Storage

Flash storage is a non-volatile memory typically found in some (tyically smaller capacity) external
drives and memory cards, but is sometimes used for internal storage in solid state drives.

CSIS 330 Operating Systems Fall 2025

This type of storage uses a quantum tunneling to “trap” an electronic bit of information between
two insulators. This bit retains its value even when the device is not powered.

Capacities of flash storage now range from around 64 MB to 256 GB. Access times are typically
in the 1 to 10 millisecond range.

An important long-term consideration when using flash memory is that it can “wear out” from
repeated writing. Many flash devices are guaranteed to withstand 100,000 write cycles, some up
to one million.

Further details of flash storage are not our concern here.

File System Interface

Our next area of focus will be on how to organize information on disks. Some of this organization
is independent of the underlying technology, but some is specific.

Hopefully everyone has a good idea what we mean by a file.

Files can be data or programs.

Files can be simple or complex (plain text, or a specially-formatted file).

The structure of a file is determined by a combination of the OS and the program that creates
it.

Files are stored in a file system, which may exist

on a disk,

on a tape,

in main memory,

or, any other storage device that might be avaiable.

Files have a number of attributes:

filename

file type (maybe)

* location — where is it on the device
* size

* protection/permissions (maybe)

* timestamp, ownership

directory information

CSIS 330 Operating Systems Fall 2025

A number of operations can be performed on files, many of which you have have been doing
throughout your lives as computer users without giving it much thought. As programmers, you
have thought somewhat more carefully than the average user.

* create

* write/append

* read

* seek (reposition within file)

* delete

e truncate

* open, close

File Types

How does a “type” get assigned to a file?

* One can use a file extension (. c, .exe, .doc, .tex, .mp3, etc.)

* However, a file extension may or may not be functionally important — even if not, the exten-
sion can give the OS and the user an hint as to the type of the file

— Windows uses an unenforced file extension registration

— Macintosh can enforce types within a file — using a special part of a file called a “re-
source fork™ to store extra information including the application that created it

— Unix uses “magic numbers”. See the file command and /usr/shared/misc/
magic in FreeBSD, /etc/magic in Solaris, files within /usr/share/file/
magic on Mac OS X.

File access may be sequential or direct. Tapes support only sequential access, disk files may
support both.

Directories

A listing of the files on a disk is a directory.

CSIS 330 Operating Systems Fall 2025

Directory Files

i

Both the directory structure and the files reside on the disk.
The directory may store some or all of the file attributes we discussed.

A directory should be able to support a number of common operations:

search for a file

create a file

delete a file

¢ rename a file

listing of files

filesystem traversal (cd)

There are many ways to organize a directory, with different levels of complexity, flexibility, and
efficiency. We will look at several possibilities.

* Single-Level Directory

The simplest method is to have one big list of all files on a disk.

Directory: Th:|.s w:|.ll 1dea

- b bbb

This can be used for a simple system. A disk for the C-64 worked like this:

LOAD "S$",38
LIST

CSIS 330 Operating Systems Fall 2025

This command reads the special file $, which indicates the disk’s directory, into memory
(like a BASIC program) from device 8 (the floppy drive). Then LIST lists the “program” in
memory, which in this case is just a list of the files on the disk.

Of course, this model breaks down pretty quickly:

— There cannot exist two files with the same name, which would likely be necessary for
multiple users/programs on a disk.

— There is no way to group files — it’s just one big list.

— Searches for a file with a given name need to look through the entire directory.

* Two-Level Directory

We can create a separate directory for each user:

Master
Directory: userl |user2 |user3 |user4
User / \ \
directories: have files three files

N S R S R

— Files now have a path name, e.g., /userl/have.

— Different users can have files of the same name (e.g., /user2/me and /user3/me)
distinguished by the path.

— Searching is more efficient, as only one user’s list needs to be searched.

— But... still no grouping capability for an individual user’s files.

* Tree-structured Directory

Now, we get to something more reasonable and usable:

Root
Directory: home bin ib kernel
Files and Sub- / \ \
directories: ul u3 libm.a|libc.a

CSIS 330 Operating Systems Fall 2025

Any directory entry can be either a file or a subdirectory.

Files can be grouped appropriately.

Search is more efficient — follow the path to the file sought, and look only in that
directory.

Here, we need to add the concept of a current working directory and related support:

* traverse directory (cd)
x operate on files in current directory by default
x or specify path, either relative or absolute

This scheme requires support for creation and removal of directories as well as files.

And new issues arise: e.g., what happens when a non-empty directory is deleted?

* Acyclic-Graph Directories

The tree model does not allow the same file to exist in more than one directory. We can
provide this by making the directory structure an acyclic graph.

Two or more directory entries can point to the same subdirectory or file, but in this model
we still disallow any directory entry pointing “back up” the directory structure.

ul u2 | common
mail |proj |.bashrc mail |proj |bashrc pub |icons|.bashrc

These kinds of directory graphs can be made using links in the Unix world, shortcuts in the
Windows world, or aliases in the Mac world.

This allows multiple names for and multiple paths to the same file on the disk.
Unix links can be
— symbolic or soft link — specify a path to the file (logical) — 1n —s — original file is
“real” others are just pointing to that one

— hard link — actual link to the same file on the disk from multiple directories (physical)
— 1n — all hard links are equal

This allows sharing of files, but introduces complications — what happens when the file is
removed from one of the directories? If there may be more references to the file, can we
delete it? With symbolic links, the file just gets deleted and we have a dangling pointer.

7

CSIS 330 Operating Systems Fall 2025

With hard links, a reference count is maintained, and the actual file is only deleted when all
references to it are removed.

In-class demo: links

* General Graph Directory
What if we allow links back up the chain?

Unix directories have this built in — all directories except the system’s root directory have a
special entry . . that indicates the parent directory, and an entry . that indicates the current
directory.

But they also allow links to be created back “up the chain” of the directory structures, poten-
tially introducing cycles in the directory graph.

home

y

dirl | filel

N

dir2 | file2

O
\O

In-class demo: dirs

When general graph directories are allowed, we need to be careful with commands like
find that search a directory and its subdirectories for something. The search is infinite if
cycles are followed. Typically, a program like find will not follow symlinks.

Problematic cycles can be avoided by allowing “up” links to files, not directories. Could also
run cycle detection every time a new link is added, if this is a concern. Unix leaves it up to
programs to make sure they treat symlinks appropriately.

BSD 4.3 limits the number of links allowed to be traversed for any given path name to 8 to
avoid undetected cycles. This limit is actually 32 in the current version of FreeBSD, and 20
for Solaris.

Inthe https://github.com/SienaCSISOperatingSystems/morelinks—example
repository, we see how symlinks can be created with system calls, and from that we can create lots
of links and test this limit.

Directory Implementation

An individual subdirectory will typically contain a list of files. How best to store this list?

CSIS 330 Operating Systems Fall 2025

* Linear list — a simple list of names, each of which has a pointer to the file’s data blocks. This
is straightforward, but requires a costly search on large directories.

* Hash Table — hashed linear list — decreases search time, but more complex to implement.
Another consideration: case sensitivity of filenames. Modern Windows, MacOS filesystems have

filenames that remember case, but searches are case insensitive (sometimes called case preserving).
Most Unix filesystems are truly case sensitive.

Disks and Partitions

A system may have a number of disks, each with one or more partitions. These are logical subdi-
visions of the physical disk, often created to help better organize data on the disk.

Demo: df -k1

A partition is where a filesystem gets created (more on that soon). Once we have a filesystem, we
need to make it accessible to the world.

In DOS/Windows, this typically involves assigning a letter to each partition. Then there is a direc-
tory hierarchy within each partition.

In Unix, there are no drive letters, everything is considered to be part of one big hierarchy. One
partition forms the root directory (/) and all others are mounted into the structure it defines.

The places where partitions get mounted are called mount points, and are nothing more than regular
directories. When a partition is mounted onto a mount point, the directory is replaced by the
contents of the partition mounted.

Demo: mounting

When the mount point directory is accessed, the virtual file system layer of the OS notices that the
directory has been used as a mount point, and sets the current directory to the root of the partition
mounted there.

The partitions mounted can be of any type, but all appear to be part of the same directory struc-
ture. The system delivers requests to the appropriate partition, and a filesystem-type-specific set of
operations are used to access the actual filesystem.

The list of partitions and their mount points and types are listed in a file system table file. In
FreeBSD, it is located in /etc/fstab; in Solaris, itis /etc/vfstab.

The partitions mounted may be remote as well as local — more on this later.

Disk Partitioning

Why might we partition a disk?
* logical separation of types of files (bootable OS, system programs, home directory space,

9

CSIS 330 Operating Systems Fall 2025

shared space, scratch space) for security or backup purposes.

* want to run multiple OSs on the same system.

* separate partition to use as virtual memory (“‘swap partition”).

* to get around OS limits on the size of a filesystem when a single disk is larger than that limit.
How can we define these partitions? These are usually specified with a system disk management
utility.

* DOS/Windows fdisk

* FreeBSD disklabel/bsdlabel

* MacOS Disk Utility

All of these do the same basic things. Break up the disk, usually on cylinder boundaries, into
logical subunits.

Each of the partitions gets a device name, and in each of these we create a filesystem.

The filesystem can then be mounted at a given mount point (in the Unix world) or at a drive letter
in DOS/Windows.

Demo: fdisk

File System Implementation

Suppose we have partitioned a disk, and it’s time to take those disk blocks that have been reserved
for our partition and create an actual file system to hold our files.

The OS could just provide access to the blocks and let programmers deal with everything, but that’s
not very nice.

We want to provide those things that operating systems are supposed to provide:

e convenience
* protection

* efficiency
Several issues need to be considered:

* how do we allocate disk blocks within our partitions to files and directories?

¢ how we decide what blocks are available?

10

CSIS 330 Operating Systems Fall 2025

» what is the complexity and efficiency of the choices we make for those?

We have already talked about possible directory structures. Most likely, these directory structures
will be implemented as files at some level. We’ll need to be able to find them on the disk just like

other files.

Allocation Methods

So first, we consider how disk blocks are allocated to files.

* Contiguous Allocation

Each file is allocated a set of contiguous disk blocks

A .
N A Directory:
file start length

ODDDD moo 5 3
OEEE = 2]
8 (][]

OO on
6 [JLJLIL]

20 (]

24
28|11
~

— similar to contiguous allocation of memory

— simple — directory entry needs only starting location (block number) and length (num-
ber of blocks)

— supports random access into files — can easily compute and read the block that contains
a certain part of the file.

— can lead to holes (external fragmentation)
— may be difficult to have a file grow

- reading should be very efficient, since consecutive blocks of the file can be stored in
consecutive blocks on the disk

¢ Clustered allocation, or Extents

This approach is analogous to segmentation for memory allocation. Files are allocated as a
collection of clustered blocks, or extents, which are contiguous chunks of disk blocks. Each
has a starting block and a size.

* Linked Allocation
Each disk block has a pointer to the next disk block in the file as well as some file data.

11

CSIS 330 Operating Systems Fall 2025

Directory

File Start End
moo 5 1
SNow 30 0

fall 14 15

— need to reserve part of each data block for a pointer — can make for odd-sized data
blocks

directory entry requires only starting block

easy to append to a file

no external fragmentation

no random access — have to traverse each block

a bad disk block means the entire file from that block on is lost

A variation on this is the File Allocation Table (FAT) used by MS-DOS and pre-NT Windows
versions. This gathers the links into one table.

T .
R Directory
File Start

OIDDD moo 5
«boma BRI

s 1000
c@O0O| s P
e CJECC]) 8
20|:||:|.. ié 1 — l EOF
24)00 20 6 | 7
sO0E0| 3 =1 1=
~

— get to use the whole disk block for data
— abad disk block means only that block is lost

— unless... the FAT itself goes bad, in which case we have a problem — have backup
copies on the disk, then run your favorite rescue program

12

CSIS 330 Operating Systems Fall 2025

— somewhat better random access — traverse the FAT only — read disk blocks only for the
data stored there

— each disk block needs a FAT entry — total number of blocks, in turn total size of a
partition — is limited by the size of the FAT

— increased block size means fewer blocks/FAT entries, but more internal fragmentation

¢ Indexed Allocation
Use disk blocks as index blocks that don’t hold file data, but hold pointers to the disk blocks

that hold file data.
Directory
File Index
moo 8
SNnow 31
2
2 8 30 21 B
23 12
7 1
17 EOF
22
6
0
EOF

— directory entry now contains a pointer to the index block

— each file’s index block contains pointers to all of its data blocks

— random access is similar to FAT

— abad data block costs only that block, bad index block could cost the entire file

— size of a file is limited by the number of pointers a data block can hold — if a block holds
512 bytes, and a pointer to a disk block takes 2 bytes, we are limited to 256-block, or
128 KB files

— now even small files require two data blocks — extra disk reads, and potentially wasted
space

Can get around the file size limitation in a few ways:

— linked indexed allocation — use the last entry in the index block as a pointer to another
index block

* this removes file size limitations
% random access becomes a bit harder

— two-level index — the index block points only to other index blocks

13

CSIS 330 Operating Systems Fall 2025

* file size limitation is not as severe — for example above, disk file now are addressed
by a 256-entry index block, each of which points to a 256-entry index block, mean-
ing we can store 65536-block or 32 MB files.

% random access is better
s« but all files take at least 3 blocks of space and access time

— Can add more levels for larger files

¢ Unix Inodes

Many Unix filesystems (Berkeley Fast Filesystem, Linux ext2fs, Sun ufs, ...) take an ap-
proach that combines some of the ideas above.

mode

owners (2)

timestamps (3)
» data
size block
count
_j-m
direct blocks —] :

— F—{ e
single indirect — . : ata

. [
lriple indirect t »= "E
| +—»{ data |

o
]
ﬁ
y
]
Y
1

double indirect

— each file is indexed by an inode

— inodes are special disk blocks set aside just for this purpose (see df —1i to see how
many of these exist on your favorite Unix filesystem)

— they are created when the filesystem is created

— the number of inodes limits the total number of files/directories that can be stored in
the filesystem

— the inode itself consists of

% administrative information (permissions, timestamps, etc.)

x a number of direct blocks (typically 12) that contain pointers to the first 12 blocks
of the file

* a single indirect pointer that points to a disk block which in turn is used as an index
block, if the file is too big to be indexed entirely by the direct blocks

* a double indirect pointer that points to a disk block which is a collection of pointers
to disk blocks which are index blocks, used if the file is too big to be indexed by
the direct and single indirect blocks

% a triple indirect pointer that points to an index block of index blocks of index
blocks...

14

CSIS 330

Operating Systems Fall 2025

interesting reading on your favorite FreeBSD system: /sys/ufs/ufs/dinode.h

small files need only the direct blocks, so there is little waste in space or extra disk
reads in those cases

medium sized files may use indirect blocks

only large files make use of (and incur the overhead of) the double or triple indirect
blocks, and that is reasonable since those files are large anyway

since the disk is now broken into two different types of blocks — inodes and data blocks,
there must be some way to determine where the inodes are, and to keep track of free
inodes and disk blocks. This is done by a superblock, located at a fixed position in
the filesystem. The superblock is usually replicated on the disk to avoid catastrophic
failure in case of corruption of the main superblock

Disk Allocation Considerations:

* limitations on file size, total partition size

* internal, external fragmentation

¢ overhead to store and access index blocks

* layout of files, inodes, directories, etc, as they affect performance — disk head movement,
rotational latency — many unix filesystems keep clusters of inodes at a variety of locations
throughout the file system, to allow inodes and the disk blocks they reference to be close
together

* may want to reorganize files occasionally to improve layout (disk defragmenting, etc)

Free Space Management

With any of these methods of allocation, we need some way to keep track of free disk blocks.

Two main options:

1. bit vector — keep a vector, one bit per disk block

0 means the corresponding block is free, 1 means it is in use

search for a free block requires search for the first O bit, can be efficient given hardware
support

vector is too big to keep in main memory, so it must be on disk, which makes traversal
slow

with block size 2'2 or 4KB, disk size 2%° or 1 TB, we need 22° bits (16 MB) for the bit
vector (seems reasonable)

easy to allocate contiguous space for files

15

CSIS 330 Operating Systems Fall 2025

2. free list — keep a linked list of free blocks

» with linked allocation, can just use existing links to form a free list

¢ with FAT, use FAT entries for unallocated blocks to store free list

* no wasted space

* can be difficult to allocate contiguous blocks

* allocate from head of list, deallocated blocks added to tail, both O(1) operations

 Alternative: keep a list of “extents” which is the address of a free block and the number
of consecutive free blocks starting there

Disk Scheduling Algorithms

We can minimize seek time by minimizing the distance the read/write head has to move in order
to service the incoming requests.

Given a sequence of cylinders that must be visited to service a set of pending disk read/write
requests, the system can order the requests to minimize seek time.

This may be done by the disk, the hardware controller, or by the operating system.
We will compare algorithms by examining their performance on a given request queue.

Given a disk with 200 cylinders (0-199), suppose we have 8 pending requests:
98, 183, 37, 122, 14, 124, 65, 67

and that the read/write read is currently at cylinder 53.
First-Come First-Served (FCFS)

We include this analog of FCFS CPU scheduling or FIFO page replacement mainly for comparison
purposes.

Requests are serviced in queue order, for a total of 640 cylinders of movement.
Shortest Seek Time First (SSTF)/Closest Cylinder Next
Service the request next that has the shortest movement from the current position.

This is the analog of SJF CPU scheduling and OPT page replacement, but unlike those, it’s feasible
here, since we do have an actual request queue (some “future knowledge™) available to us.

In our example:

65, 67,37, 14, 98, 122, 124, 183

16

CSIS 330 Operating Systems Fall 2025

The total seek distance is 236 cylinders.

Potential problem: if many requests keep arriving near where the disk head is positioned, distant
requests may be starved.

SCAN or Elevator Algorithm

When an elevator is going in one direction, it stops at all the floors where there is a pending request.
Then it reverses direction and does the same thing.

With this algorithm, the disk arm does just this. Service requests in one direction, then reverse
direction.

In our example, assuming we are “going down” at the start:
37, 14, (0), 65, 67,98, 122, 124, 183

236 cylinders again. It is a coincidence that this is the same as SSTF.

Note that the disk arm went all the way to 0, even though there were no requests below 14. This is
because this particular algorithm doesn’t look ahead, it just moves back and forth from one end to
the other.

We can take care of that extra movement down to 0 with ...
LOOK Algorithm

It’s the same as SCAN, but the head reverses direction as soon as there are no pending requests in
the current direction.

The movement is the same as SCAN, just without that move from 14 to 0 and then up to 65. This
reduces the movement to 208 cylinders.

Both SCAN and LOOK can lead to non-uniform waiting times. A request near one end of the disk
sometimes needs to wait for two sweeps across the disk, while other times it will be serviced very
quickly. Requests near the middle have a more uniform average waiting time.

Circular Algorithms

This problem can be addressed using circular versions of SCAN (C-SCAN) and LOOK (C-LOOK),
where when the disk arm gets to the end of the disk, it jumps immediately back to the other end.

Assuming the disk services requests only when “going up”, our example using these algorithms
are served in order:

65, 67, 98, 122, 124, 183, 14, 37

With C-SCAN, the head goes all the way to 199 and all the way back to 0, giving total movement
of 382. With C-LOOK, we do not need to go up past 183 or down past 14, making the movement
total 322.

17

CSIS 330 Operating Systems Fall 2025

The penalty of the movement all the way back in the other direction may not be as large as it seems.
Think of the mechanics of the situation — starting and stopping the disk arm takes more time than
simply sweeping all the way across with just one acceleration and deceleration.

Comparing Disk Scheduling Algorithms

SSTF or LOOK are often reasonable for a default algorithm

SCAN and C-SCAN are better for heavily loaded systems where LOOK is unlikely to save
much and SSTF runs the risk of starvation

 performance depends on the frequency and types of requests
* we may want to consider some of this when thinking about how to organize file systems

FreeBSD’s ufs filesystem (the default for FreeBSD) uses an elevator algorithm. Here is the com-
ment at the top of file /sys/ufs/ufs/ufs_disksubr.c:

* %

Seek sort for disks.

* X

gqueue holds those requests which are positioned after the current block
(in the first request); the second, which starts at queue->switch_point,
holds requests which came in after their block number was passed. Thus

X % X

*

to the first request on the second queue, at which time it becomes the
first queue.

*

* A one-way scan is natural because of the way UNIX read-ahead blocks are
* allocated.

*/

RAID

To this point, we have talked about “partitions” as subdivisions of an individual disk. It is also
possible to have a logical “partition” span multiple disks, and to create a filesystem within that
logical partition.

RAID - Redundant Array of Independent/Inexpensive Disks

» multiple disks to provide reliability through redundancy
* efficiency — work can be spread across a number of disks or even disk controllers

* convenience of one large partition instead of many small ones

18

The buf_qgueue keep two queues, sorted in ascending block order. The first

we implement a one way scan, retracting after reaching the end of the drive

CSIS 330 Operating Systems Fall 2025

My experience with RAID: the former bullpen cluster:

12 disks, 18 GB each. Connected to one Wide-SCSI controller. The system sees it as one big
partition:

> df -k /export/raid

Filesystem kbytes used avail capacity Mounted on
/dev/dsk/clt5d0s6 191175687 25709437 163554494 14% /export/raid

Yes, at the time it was a big (and expensive) deal to have 191GB of space. It was 2001. Times have
changed.

There are many ways to organize a RAID (Tanenbaum, Figure 5-19):

O

Strip 0 Strip 1 Strip 2 Strip 3
P f——1 —] [——1
(a) | Strip 4 Strip 5 Strip & Strip 7 | RAID level 0

P] P] P] e]

Strip 8 Strip8 | | Strip 10) | Strip 11

e e el e S

- Y § e F o Yo Yo Yo Yo
Strip 0 Strip 1 Strip 2 Strip 3 Strip 0 Strip 1 Strip 2 w
P]] e] e] B R e RAID
b) | stripa | | strips | | strips | | stip7 | | Swripa | | Svips | | Srips W laval 1
e 1]] —— ~——1] [~———
Strip 8 Strips | | Strip 10| | Strip 11 Strips Srip9 | |Strip 10

D) (D))) D) @) (=

Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit & Bit 7
P ——1 ——1 [~——1 e — [——]
(c) RAID level 2

(d} RAID level 3

o W i W e W e W
P] e =] 1 1 ————1
Strip 0 Strip 1 Strip 2 Strip 3 PO-3
b e e A —] ——
Strip 4 Strip 5 Strip 6 Strip7 Pa-7 | RAID level 4

Strip 8 Strip9 | | Strip 10] | Strip 11 P8-11
e e o M o e

(e

—

Ao, e, eECTem, gmECeesen
f— 1 —}—1 —1 [—

Strip 0 Strip 1 Strip 2 Strip 3
Strip 4 Strip 5 Sirip 6 Pa-7
(f) | Stripa Strip 9 Pa-11 Sirip 10
e B A A
Strip12| | P12-15| | Sirip 13| | Strip 14
b e e

P16-19| |Strip 16 (Strip 17| |Strip 18
Sy o o

RAID leval 5

e RAID Level O

19

CSIS 330 Operating Systems Fall 2025

— basically just paste together a bunch of disks to see them as one big partition

striping

not really a RAID, as it is not redundant

reliability: one disk failure results in potential loss of entire partition! Actually lower
the MTBF (mean time between failures)

little or no overhead on writes

100% of disk space is usable for storage

e RAID Level 1

mirroring

reliability: any failed disk can be reconstructed from its mirror with a simple copy

all writes must be written to two disks

reads can come from either of two disks — spread out the load

50% of disk space is usable for storage

e RAID Level 2

memory-style error-correcting-code (ECC) organization

use 7 synchronized disks to store 4 disks worth of data

for each 4 bits, compute a 7-bit Hamming-coded (see http://mathworld.wolfram.
com/HammingCode.html word

Hamming codes are self-correcting for one error, can detect two errors

— 57.1% of disk space is usable for storage
* RAID Level 3

— bit-interleaved parity organization

like RAID-2, but use a single parity bit

still can recover a lost disk using the parity bit

two lost disks means entire partition is lost

can work with any number of disks

can include multiple parity disks

space overhead of the parity disk(s)
* RAID Level 4

— block-interleaved parity organization

— use stripes for parity unit, allowing disks to work independently

20

CSIS 330 Operating Systems Fall 2025

— still can recover a lost disk
— parity disk can be a bottleneck as all writes require a write to the parity disk

— space overhead of the parity disk(s)
* RAID Level 5

— block-interleaved distributed parity
— like RAID-4, but parity bit is distributed across all disks

— This is what was used in my 2001 cluster and it actually worked when disks failed:
filesystems could be accessed in “degraded” mode after disk failure, and filesystem
was rebuilt automatically when the replacement disk was installed

* RAID Level 6
— Like RAID-5 but with error correcting codes
e RAID Level 0+1, 1+0

— Combine RAID Level O (for striping/efficiency) with RAID Level 1 (for redundancy)
Where does this happen?

* RAID controller — work is done by hardware, OS sees a single drive

* kernel/device driver — work is done by the OS in software — OS uses disks independently,
but presents them to “users” as a single unit

In FreeBSD see “vinum” and in Linux see https://raid.wiki.kernel.org/

Performance Optimization

Disk Cache

Caching is an important optimization for disk accesses.

A disk cache may be located:

* main memory
e disk controller

¢ internal to disk drive

21

CSIS 330 Operating Systems Fall 2025

For a lecture assignment, you will read about a strategy used by many Unix variants to use main
memory as a disk cache: the buffer cache.

Safety and Recovery

When a disk cache is used, there could be data in memory that has been “written” by programes,
which which has not yet been physically written to the disk. This can cause problems in the event
of a system crash or power failure.

If the system detects this situation, typically on bootup after such a failure, a consistency checker
is run. In Unix, this is usually the £sck program, and in Windows, scandisk or some variant.
This checks for and repairs, if possible, inconsistencies in the filesystem.

Demo: fsck

Journaling Filesystems

One way to avoid data loss when a filesystem is left in an inconsistent state is to move to a log-
structured or journaling filesystem.

* record updates to the filesystem as transactions

* transactions are written immediately to a log and the action is committed by the OS (the
application can continue), though the actual filesystem may not yet be updated

* transactions in the log are asynchronously applied to the actual filesystem, at which time the
transaction is removed from the log

* if the system crashes, any pending transactions can be applied to the filesystem — main
benefits are less chance of significant inconsistencies, and that those inconsistencies can be
corrected from the unfinished transactions, avoiding the long consistency check

* Examples:

— ReiserFS, see http://en.wikipedia.org/wiki/ReiserFsS, alinux journal-
ing filesystem

— ext3 and ext4, most common filesystems for Linux today

— jfs,see http://jfs.sourceforge.net/, IBM journaling filesystem, available
for AIX, Linux

— Related idea in FreeBSD’s filesystem: Soft Updates, see http://www.freebsd.
org/doc/en/articles/gjournal-desktop/configure-journal.html

— Journaling extensions to Macintosh HFS disks

— NTFS does some journaling, but some claim it is not “fully journaled”

* the term “journaling” may also refer to systems that maintain the transaction log for a longer
time, giving the ability to “undo” changes and retrieve a previous state of a filesystem

22

CSIS 330 Operating Systems Fall 2025

Hierarchical Storage

Recall our memory hierarchy:

Regs Small, fast, expensive

Cache

/ Main Memory \
/ Disk/Virtual Memory\

/ Tape, Remote Access, etc.\ Large, slow, cheap

Just as virtual memory uses disks to simulate a larger main memory, tapes and other removeable
media can be used to simulate a larger disk.

extend the filesystem
* small and frequently-used files remain on disk
* large, old, rarely-used files are archived on tapes

* when one of the old files is requested, the file is brought back onto the disk from the appro-
priate tape

* usually implemented as a jukebox of tapes or removeable disks

* tape latency is typically 1000 times that of a disk

* add in a tape robot that has to go fetch a tape and it is even worse

* or worse yet, a human who has to be notified, go to the “tape room”, find the tape, bring it
to the drive, load it

These systems are found at large supercomputing centers.

* HPSS - High Performance Storage System, see http://www.hpss—-collaboration.

org/

* An older example was called UniTree

23

CSIS 330 Operating Systems Fall 2025

Other issues:

how to decide when to archive to tape

retrieval from archive may be fully automated or users may need to explicitly request files
from tapes

duplicate tapes? — tapes can be unreliable

when is this worthwhile? Can’t we just archive information manually?

Virtual File System Layer

We have seen that there are many ways to organized file systems, including things like RAID and
hierachical file systems. We will soon see more about networked file systems. But as users or
programmers of modern computers, we rarely if ever are aware of all of these differences. We can
access files exactly the same way whether the files are on a local disk with a FAT filesystem, a
local disk with a ufs or ext3 filesystem, as part of a RAID, or located on a network file server. This
is made possible by the virtual file system (VFS) layer.

VES provide an object-oriented way of implementing and utilizing file systems.

The same system call interface (API) can be used for many different types of file systems. Even
those that do not yet exist when code is written. All file access is through the API meeting the VFS
interface, rather than any specific type of file system.

file-system interface

l

VFS interface

local file system local file system remote file system
pe 1 ype 2 type 1

A

network

The VFES gets requests for various file operations from programs. It then determines, based on the
path, which filesystem should be accessed. Each supported filesystem type has implementations
of each operation that are aware of the details of that filesystem.

The text has a bit more information about the Linux VFS system, but our main goal is to understand
the idea and why it is essential to provide convenient access to file systems.

24

