Computer Science 330

BSIENA Operaing Systems

COMPUTER SCIENCE Fall 2025

Lab 8: Working Set Simulation
Due: 4:00 PM, Friday, December 5, 2025

In this lab, we will use a simulator to gain a better understanding of the working set frame allocation
policy. There is also an opportunity to implement your own simulator for bonus programming
project points.

You may work individually or in a groups of two or three.

Learning goals:

1. To gain a better understanding of how the working set model for memory frame allocation
works

2. To see how a series of machine-code-like instructions generates a page reference string

3. To study the behavior of a particular reference string with the working set model, and relate
that behavior back to the program that generated that string of references

Al assistance in code development is permitted but must be documented thoroughly. This must be
more than just a “Copilot helped” comment; describe clearly which Al tool(s) you used, how you
interacted with them, and what portions of your submitted work includes code that was all or in
part generated with Al assistance.

Getting Set Up

In Canvas, you will find a link to follow to set up your GitHub repository, which will be named
ws—lab-yourgitname, for this lab. Only one member of the group should follow the link to
set up the repository on GitHub, then others should request a link to be granted write access.

Answers to written questions may be given in a PDF document committed and pushed to your
repository (give the name in the README .md file), by writing them in a readable (reasonably
nicely formatted, not all one big line of text) GitHub Markdown form in your repository’s READ—
ME . md file, or by linking to a shared document containing your answers from your README . md
file.

Page Reference String

In order to investigate the working set allocation scheme through simulation, we use a page refer-
ence string that represents a sequence of memory accesses, and simulate what would happen in a
working set allocation given that access string.

CSIS 330

Operating Systems

Fall 2025

We will consider a “pseudo-realistic” page reference string that corresponds to the following pro-
gram segment, written in a C-like language:

const
int i,

int n=10;
j, A[n], B[n], C[n],

for (i=1; i<=n; i++) {
temp=0;

for

(J=1i; J<=n; Jj++) |

temp=temp+A[n+i-j]*B[J];

}
Cl[i]

=temp;

Using a hypothetical machine with registers denoted by R: and a fixed instruction size of 1 word
per instruction, the machine language version of this program is loaded in virtual address space
(with page size 4K, i.e., 1024 words) as follows:

0x2FBC
0x2FCO
0x2FC4
0x2FC8
0x2FCC
0x2FDO
0x2FD4
0x2FD8
0x2FDC
0x2FEQ
0x2FE4
Ox2FES8
0x2FEC
O0x2FFO0
O0x2FF4
Ox2FF8
O0x2FFC
0x3000
0x3004
0x3008
0x300C
0x3010
0x3014
0x3018

(R1) <—- ONE

(R2) <= n

compare R1,R2
branch_greater + 0x20
A(R1) <— (R1)

(RO) <= n

(RO) <-= (RO) = (R1)
(RO) <= (RO) + ONE
B(R1) <- (RO)

(R1) <- (R1) + ONE
branch = - 0x20

(R1) <— ONE

(R2) <= n

compare R1,R2
branch_greater + 0x50
(RO) <- ZERO

temp <- (RO)

(R3) <- (R1)

(R4) <—n

compare R3,R4
branch_greater + 0x20
(RO) <= n

(RO) <= (RO) + (R1)
(RO) <—= (RO) = (R3)

Index i
Loop bound
Test i>n

Compute A[i]
Compute B[i]

Increment i
Index i
Loop bound
Test i>n
temp <- 0
Index jJ
Loop bound

Test j>n

Compute A[n+i-7j]

CSIS 330 Operating Systems Fall 2025

0x301C (R5) <= A(RO)

0x3020 (R6) <— B(R3) Compute B[7]
0x3024 (R5) <= (R5) x (R6)

0x3028 (R5) <- (R5) + temp

0x302C temp <- (R5)

0x3030 (R3) <- (R3) + ONE Increment j
0x3034 Dbranch - 0x20

0x3038 C(R1) <- (R5) Compute C[i]
0x303C (R1) <- (R1) + ONE Increment 1

0x3040 Dbranch - 0x50

0x6000 Storage for C
0x7000 Storage for ONE
0x7004 Storage for n
0x7008 Storage for temp
0x700C Storage for ZERO
0x8000 Storage for A
0x9000 Storage for B

Upon execution of this program segment, the following reference string is generated:
w= 272722(28272272927222)"272722(272733733(373338393373737333)"~"*13637322)"

Question 1: State the instruction or variable reference that causes each of the first 20 page refer-
ences (up to the end of the first parenthesized portion of the reference string). (5 points)

Question 2: How long should this string be for n = 10?7 (2 points)

Question 3: For values of A of 2, 5, and 10, show the working set after each of the first 20 page
references. Assuming only pages in the working set are kept in physical memory, indicate which
page references would result in a page fault and how many page faults are generated for each A
value. (10 points)

Working Set Simulator

In order to explore the run-time behavior of the working set memory management policy for such
a reference string for different values of n and A, we can write a simulator.

You may choose to use my simulator (which is available as an executable on noreaster in /home /
cs330/ws/sim) or you may choose to implement your own simulator for 20 bonus program-
ming project points. Even if you are not going to implement your own simulator, read over this
section carefully. You need to understand this description to be able to do the simulation study and
analysis in the next section.

If you wish to receive the bonus points, write your simulator in the repository for this lab, and
commit and push it by close of business on the last day of the semester.

The simulator will print values:

CSIS 330 Operating Systems Fall 2025

A = window size
P(A) = total number of page faults
W(A) = average working set size
F(A) = Pﬁ) = average page fault rate

The main program takes the value of A as a command-line parameter. This will allow you to write
a script (in your favorite scripting language) that runs the program repeatedly for the values of A
required. The value of A is specified with the —d flag. A debugging mode can be turned on by —D,
which shows how the working set changes as each page is referenced. The program also takes a
flag —n to specify n in the reference string used. The default is 10, and you may use that to generate
your plots. You are encouraged to try other values of n, but you need only plot for n = 10.

Note that as each entry in the reference string (page) is processed, one of four things will happen to
the working set. (2) the page is added to the set, and none is removed, (:2) the page is added to the
set and one old page is removed, (z27) the page is already in the set and another page is removed,
or (iv) the page is already in the set and no other page is removed.

Our program will hard-code the reference string (actually, generate it on the fly) but the design
should be modular enough that you could replace one function to generate a different reference
string. The code used by the provided simulator to generate the reference string is included in the
files rs_gen. [ch] in your repository for this lab.

A Brief Simulation Study

Use the simulator to generate the data for, and then plot the following curves:

1. Avs. P(A),
2. Avs. W(A), and
3. Avs. 1/F(A),

for n = 10 and all values of A ranging from 1 to 200.
Question 4: Include these plots in your repository. (15 points)

Question 5: From the plot of A vs. 1/F(A), explain the cause of all knees in the graph in terms
of program (or reference string) structure. (10 points)

Question 6: Is the strategy used by this program one that could be used by a real system to keep
track of a process’ working set? Why or why not? (3 points)

Submission
Commit and push!
Those wishing to submit a simulation program for bonus programming project credit should tag

the instructor in a GitHub Issue in the repository to request grading.

4

CSIS 330 Operating Systems Fall 2025

Grading

This assignment will be graded out of 45 points.

| Feature | Value | Score |
Question 1 5
Question 2 2
Question 3 10
Question 4: plots | 15
Question 5 10
Question 6 3
’ Total \ 45 \ ‘

Bonus simulator submissions will be graded on correctness, style, and documentation, earning up
to 20 programming project points. Important note: group submissions must clearly indicate the
contributions of all group members.

