
Computer Science 330
Operating Systems
Siena University
Fall 2025

Lab 7: Interprocess Communication
Due: 11:59 PM, Wednesday, November 12, 2025

In this lab, you will learn about some Unix operating system mechanisms that support interprocess
communication.

You must work individually on this lab.

Learning goals:

1. To learn about pipes in Unix

2. To learn about signal handling in Unix

Getting Set Up
In Canvas, you will find a link to follow to set up your GitHub repository, which will be named
ipc-lab-yourgitname, for this lab.

Answers to written questions may be given in a PDF document committed and pushed to your
repository (give the name in the README.md file), by writing them in a readable (reasonably
nicely formatted, not all one big line of text) GitHub Markdown form in your repository’s README.md
file, or by linking to a shared document containing your answers from your README.md file.

Examples related to this lab are in

https://github.com/SienaCSISOperatingSystems/sysprog-examples

(same as in the previous lab).

Pipes
Processes may wish to send data streams (sequences of bytes) to each other. Unix pipes are one
way to achieve this. You’ve almost certainly used Unix pipes at the command line. All modern
Unix shells allow you to specify multiple commands on the same command line with | symbols
in between. This indicates that these programs should be running at the same time, and that the
output of a program in any (except the last) program in the pipeline should be “piped” to be the
input of the subsequent program in the pipeline.

For example, the command line

ls | wc

CSIS 330 Operating Systems Fall 2025

runs the ls and the wc (“word count”) programs, piping the output of ls to be the input of wc.

Question 1: What information is printed by the pipeline above, and what does it mean? (1 point)

Issue this piped command on noreaster:

grep ˆq /usr/share/dict/words | wc -l

Question 2: What is the output? What does each command and parameter do and what does the
answer tell us? (2 points)

There’s no reason to limit this to just two commands in a pipeline. In your repository, there is a file
namelist.txt that contains an unsorted list of names, one per line. We want to consider only
those names that contain the word “dan” anywhere in the name, and we want to print out the last
three alphabetically from that group. This pipelined command line would do it:

grep -i dan namelist.txt | sort | tail -3

Question 3: Explain what’s happening in each component of the above command pipeline and
how they combine to work as described. (3 points)

For the following lab questions, describe the effect of the given command pipeline.

Question 4: ls -1 | wc -l (1 point) Note: the parameter to ls is the number ‘1’ while the
parameter to wc is the letter ‘l’.

Question 5: head -10 myfile | tail -1 (1 point) The parameter to tail is the number
‘1’. We assume that the file myfile contains at least 10 lines.

For the following lab questions, give a single Unix command pipeline that would accomplish the
task described.

Question 6: List all of the files in a directory that were last modified on Halloween. (2 points)
Hint: start with ls -la.

Question 7: Given a file with a list of several hundred words, one per line, print the single word
that occurs between lines 100 and 200 of the file which is last alphabetically. (3 points)

Using Pipes in C Programs
Turns out, you can also use pipes directly in programs. Which is a good thing, since Unix shells
that support this are just C programs.

An unnamed pipe can be created using the pipe(2) system call.

Question 8: Review: what does the “2” indicate in “pipe(2)” above? (1 point)

The parameter (called filedes in the man page) is an array of two int values. These are file
descriptors, just like the file descriptors we saw previously for file I/O using open(2), read(2),
and write(2). filedes[0] is the “read end” and filedes[1] is the “write end”.

2

CSIS 330 Operating Systems Fall 2025

Question 9: How can you tell if the creation of an unnamed pipe with the pipe(2) system call
was successful? (1 point)

As with the file descriptors we can obtain from the open(2) system call, we read and write
data from a pipe file descriptor using the read(2) and write(2) system calls. Recall that
these operate only on basic streams of bytes – any structure to the data is the responsibility of the
programmer using the functions.

We consider the example programs in the pipes directory.

pipe1.c is an example of communication between two processes, a parent and its child created
by fork(), communicating via an unnamed pipe.

Question 10: What is the output when you run this program? (1 point)

This required that the values of fd are shared between the parent and child processes. This is fine
when you create your pipe just before a fork(), but what if we have two processes already in
existence that wish to communicate through a pipe?

We can create a named pipe or fifo at the command command line with mkfifo(1) or in a
program with mkfifo(2).

pipe2.c augments our simple example using a named pipe.

Question 11: Run this program without creating the pipe "testpipe". What happens? (1 point)

Question 12: Create the named pipe using mkfifo(1). What is the output of the command ls
-l testpipe after you do this? (1 point)

Question 13: Now run the program again with the named pipe in place. What is the output? (1
point)

pipeprocs.c is an example that’s a little more interesting: two independent processes commu-
nicate through a pipe.

Run two instances of this program in two different windows, one to read, one to write.

Question 14: What is the output from each program? (2 points)

Question 15: Does it matter which order you create the processes? Why or why not? (2 points)

Duplicating file descriptors
We can use the dup2(2) system call to “reroute” input or output from one file descriptor to
another file descriptor. This is how your I/O redirection and pipes will work in the shell project.

Back in the exec directory of the sysprog-examples repository, see and try execredir.c.

Question 16: If you run the program with a parameter "outfile", what ends up in outfile?
Why? (1 point)

Note that we don’t close the file here and in fact are not given an opportunity to do so since we
lose control once the execlp call occurs.

3

CSIS 330 Operating Systems Fall 2025

We have seen that you can also obtain file descriptors from open(2) and pipe(2). The file
descriptors at the ends of a pipe can be passed to dup2(2) as well – this will be useful in the shell
– set the output of one process to be the input of another through a pipe.

Signals
We next consider a form of interprocess communication in a Unix system known as signals.

Question 17: Run kill -l (that’s the letter ’l’) on both a Linux and a FreeBSD system to see
the list of signals supported by each. What is the output on each system? (1 point)

We can send a signal “SIGSOMETHING” to a process pid with the command

kill -SIGSOMETHING pid

For example, if we launch a program at our Unix prompt to sleep for 60 seconds and put it into the
background:

-> sleep 60 &

you should see output something like:

[1] 96132

where “96132” would be the process id of the sleep process you just created, and [1] is the job
number within your Unix shell of the process.

We can then send signals to that process by using its pid or %1 which will refer to job number 1.

For example:

-> kill -TERM %1

will send the SIGTERM signal to try to terminate the process. If you do this, you should see output
similar to:

[1]+ Terminated sleep 60

Now launch another sleep 60 process in the background. Assuming this becomes shell job 1,
issue these commands:

-> kill -STOP %1
-> kill -CONT %1

4

CSIS 330 Operating Systems Fall 2025

and wait until the sleep command finishes.

Question 18: What do these do, and what output do you see? (2 points)

Every process has signal handlers that are used to respond to signals sent to the process. Basically,
it’s a function that gets called asynchronously when a signal is received.

A default signal handler is installed when a process begins. signal(2) replaces default handler.
This lets you trap many signals and handle them appropriately.

Be careful not to confuse this signal() with the “signal” operation on semaphores! Unrelated.

We consider the example programs in the signals directory.

The sigalrm-example.c example is compute-bound process that “wakes up” every 5 seconds
to report on its progress.

The setitimer(2) system call is used to set a “timer” which will cause a SIGALRM signal to
be sent to the process at some time in the future (in this case, every 5 seconds).

Question 19: What line sets up the signal handler for SIGALRM? (1 point)

Question 20: What function acts as the signal handler for SIGALRM? (1 point)

We can ignore a signal completely by setting its handler to SIG IGN, and restore the default
handler with SIG DFL.

Consider this enhanced example: sigalrm-example2.c

Question 21: Which signals are handled by the signal handling function in this example? Which
ones are ignored completely? (2 points)

A process can also send signals with kill(2). Don’t let the name fool you, this function can be
used to send any signal, not just SIGKILL.

Question 22: One of the signal handlers in this example also sends a signal. Which handler also
sends a signal and what signal does it send? (1 point)

Question 23: What happens when you send each of these signals to your running program us-
ing the kill command from the command line? SIGALRM, SIGINT, SIGTERM, SIGSTOP,
SIGCONT, SIGUSR1, and SIGKILL. Try each out and paste in your output for each. (3 points)

Final note about signals: SIGCHLD will be useful for your shell projects. This is the signal that
gets sent to a process’s parent when the (child) process terminates.

Submission
Commit and push!

Grading
This assignment will be graded out of 35 points.

5

CSIS 330 Operating Systems Fall 2025

Feature Value Score
Question 1 1
Question 2 2
Question 3 3
Question 4 1
Question 5 1
Question 6 2
Question 7 3
Question 8 1
Question 9 1
Question 10 1
Question 11 1
Question 12 1
Question 13 1
Question 14 2
Question 15 2
Question 16 1
Question 17 1
Question 18 2
Question 19 1
Question 20 1
Question 21 2
Question 22 1
Question 23 3
Total 35

6

