
Computer Science 330
Operating Systems
Siena College
Fall 2022

Lab 8: Working Set Simulation
Due: 4:00 PM, Friday, December 9, 2022

In this lab, we will use a simulator to gain a better understanding of the working set frame allocation
policy. There is also an opportunity to implement your own simulator for bonus programming
project points.

You may work individually or in a groups of two or three.

Learning goals:

1. To gain a better understanding of how the working set model for memory frame allocation
works

2. To see how a series of machine-code-like instructions generates a page reference string

3. To study the behavior of a particular reference string with the working set model, and relate
that behavior back to the program that generated that string of references

Getting Set Up
In Canvas, you will find a link to follow to set up your GitHub repository, which will be named
ws-lab-yourgitname, for this lab. Only one member of the group should follow the link to
set up the repository on GitHub, then others should request a link to be granted write access.

Answers to written questions may be given in a PDF document committed and pushed to your
repository (give the name in the README.md file), by writing them in a readable (reasonably
nicely formatted, not all one big line of text) GitHub Markdown form in your repository’s READ-
ME.md file, or by linking to a shared document containing your answers from your README.md
file.

Page Reference String
In order to investigate the working set allocation scheme through simulation, we use a page refer-
ence string that represents a sequence of memory accesses, and simulate what would happen in a
working set allocation given that access string.

We will consider a “pseudo-realistic” page reference string that corresponds to the following pro-
gram segment, written in a C-like language:

const int n=10;
int i, j, A[n], B[n], C[n], temp;

CSIS 330 Operating Systems Fall 2022

for (i=1; i<=n; i++) {
A[i]=i;
B[i]=n-i+1;

}
for (i=1; i<=n; i++) {

temp=0;
for (j=i; j<=n; j++) {

temp=temp+A[n+i-j]*B[j];
}
C[i]=temp;

}

Using a hypothetical machine with registers denoted by Ri and a fixed instruction size of 1 word
per instruction, the machine language version of this program is loaded in virtual address space
(with page size 4K, i.e., 1024 words) as follows:

0x2FBC (R1) <- ONE Index i
0x2FC0 (R2) <- n Loop bound
0x2FC4 compare R1,R2 Test i>n
0x2FC8 branch_greater + 0x20
0x2FCC A(R1) <- (R1) Compute A[i]
0x2FD0 (R0) <- n Compute B[i]
0x2FD4 (R0) <- (R0) - (R1)
0x2FD8 (R0) <- (R0) + ONE
0x2FDC B(R1) <- (R0)
0x2FE0 (R1) <- (R1) + ONE Increment i
0x2FE4 branch * - 0x20
0x2FE8 (R1) <- ONE Index i
0x2FEC (R2) <- n Loop bound
0x2FF0 compare R1,R2 Test i>n
0x2FF4 branch_greater + 0x50
0x2FF8 (R0) <- ZERO temp <- 0
0x2FFC temp <- (R0)
0x3000 (R3) <- (R1) Index j
0x3004 (R4) <- n Loop bound
0x3008 compare R3,R4 Test j>n
0x300C branch_greater + 0x20
0x3010 (R0) <- n Compute A[n+i-j]
0x3014 (R0) <- (R0) + (R1)
0x3018 (R0) <- (R0) - (R3)
0x301C (R5) <- A(R0)
0x3020 (R6) <- B(R3) Compute B[j]
0x3024 (R5) <- (R5) * (R6)
0x3028 (R5) <- (R5) + temp
0x302C temp <- (R5)
0x3030 (R3) <- (R3) + ONE Increment j

2

CSIS 330 Operating Systems Fall 2022

0x3034 branch - 0x20
0x3038 C(R1) <- (R5) Compute C[i]
0x303C (R1) <- (R1) + ONE Increment i
0x3040 branch - 0x50

...
0x6000 Storage for C
0x7000 Storage for ONE
0x7004 Storage for n
0x7008 Storage for temp
0x700C Storage for ZERO
0x8000 Storage for A
0x9000 Storage for B

Upon execution of this program segment, the following reference string is generated:

ω= 272722(28272272927222)n272722(272733733(373338393373737333)n−i+13637322)n

Question 1: State the instruction or variable reference that causes each of the first 20 page refer-
ences (up to the end of the first parenthesized portion of the reference string). (5 points)

Question 2: How long should this string be for n = 10? (2 points)

Question 3: For values of ∆ of 2, 5, and 10, show the working set after each of the first 20 page
references. Assuming only pages in the working set are kept in physical memory, indicate which
page references would result in a page fault and how many page faults are generated for each ∆
value. (10 points)

Working Set Simulator
In order to explore the run-time behavior of the working set memory management policy for such
a reference string for different values of n and ∆, we can write a simulator.

You may choose to use my simulator (which is available as an executable on noreaster in /home/
cs330/ws/sim) or you may choose to implement your own simulator for 20 bonus program-
ming project points. Even if you are not going to implement your own simulator, read over this
section carefully. You need to understand this description to be able to do the simulation study and
analysis in the next section.

If you wish to receive the bonus points, write your simulator in the repository for this lab, and
commit and push it by close of business on the last day of the semester.

The simulator will print values:

∆ = window size
P (∆) = total number of page faults
W (∆) = average working set size

F (∆) = P (∆)
|ω| = average page fault rate

The main program takes the value of ∆ as a command-line parameter. This will allow you to write

3

CSIS 330 Operating Systems Fall 2022

a script (in your favorite scripting language) that runs the program repeatedly for the values of ∆
required. The value of ∆ is specified with the -d flag. A debugging mode can be turned on by -D,
which shows how the working set changes as each page is referenced. The program also takes a
flag -n to specify n in the reference string used. The default is 10, and you may use that to generate
your plots. You are encouraged to try other values of n, but you need only plot for n = 10.

Note that as each entry in the reference string (page) is processed, one of four things will happen to
the working set. (i) the page is added to the set, and none is removed, (ii) the page is added to the
set and one old page is removed, (iii) the page is already in the set and another page is removed,
or (iv) the page is already in the set and no other page is removed.

Our program will hard-code the reference string (actually, generate it on the fly) but the design
should be modular enough that you could replace one function to generate a different reference
string. The code used by the provided simulator to generate the reference string is included in the
files rs_gen.[ch] in your repository for this lab.

A Brief Simulation Study
Use the simulator to generate the data for, and then plot the following curves:

1. ∆ vs. P (∆),

2. ∆ vs. W (∆), and

3. ∆ vs. 1/F (∆),

for n = 10 and all values of ∆ ranging from 1 to 200.

Question 4: Include these plots in your repository. (15 points)

Question 5: From the plot of ∆ vs. 1/F (∆), explain the cause of all knees in the graph in terms
of program (or reference string) structure. (10 points)

Question 6: Is the strategy used by this program one that could be used by a real system to keep
track of a process’ working set? Why or why not? (3 points)

Submission
Commit and push!

Those wishing to submit a simulation program for bonus programming project credit should tag
the instructor in a GitHub Issue in the repository to request grading.

Grading
This assignment will be graded out of 45 points.

4

CSIS 330 Operating Systems Fall 2022

Feature Value Score
Question 1 5
Question 2 2
Question 3 10
Question 4: plots 15
Question 5 10
Question 6 3
Total 45

Bonus simulator submissions will be graded on correctness, style, and documentation, earning up
to 20 programming project points. Important note: group submissions must clearly indicate the
contributions of all group members.

5

