
Computer Science 330
Operating Systems
Siena College
Fall 2022

Programming Project 2: Producers/Consumers with
Semaphores

Due: 11:59 PM, Friday, October 28, 2022

In this small programming project you will write a program to simulate a bounded buffer problem
with multiple producers and multiple consumers.

You may work alone or with a partner or two on this programming project.

Learning goals:

1. To work with POSIX threads and POSIX semaphores in a solution to a generalized bounded
buffer problem.

Getting Set Up
In Canvas, you will find link to follow to set up your GitHub repository, which will be named
semaphores-proj-yourgitname, for this programming project. Only one member of the
group should follow the link to set up the repository on GitHub, then others should request a link
to be granted write access.

Bounded Buffer with Semaphores
In class, we looked at this pseudocode for the bounded buffer problem for a single producer and a
single consumer using semaphores for synchronization and mutual exclusion.

• Shared data:

semaphore fullslots, emptyslots, mutex;
fullslots=0; emptyslots=n; mutex=1;

• Producer process:

while (1) {
produce item;
wait(emptyslots);
wait(mutex);
add item to buffer;
signal(mutex);
signal(fullslots);

}



CSIS 330 Operating Systems Fall 2022

• Consumer process:

while (1) {
wait(fullslots);
wait(mutex);
remove item from buffer;
signal(mutex);
signal(emptyslots);
consume item;

}

Your task is to write a C program that implements the bounded buffer problem for an arbitrary
number of producers and consumers and items to be processed (each specified by command-line
parameters). If i items are to be processed by p producers and c consumers, each producer should
produce i

p
items and each consumer should consume i

c
items. You may either check that these di-

vide evenly and report an error if not, or account for the uneven division by having some producers
or consumers process one extra item.

Use POSIX threads to create your producers and consumers and use POSIX semaphores for syn-
chronization. Your solution should avoid the busy wait seen in some of the class examples (other
than any busy waiting that might takes place inside a semaphore wait or signal operation,
which is not your fault). Note that the class pseudocode examples, including the one above, were
usually for a single producer and a single consumer, so the in and out variables could be modified
by only one process. Once we introduce multiple producers and consumers, we also introduce new
critical sections related to concurrent access of those variables, which will also require protection
with semaphores.

Write your program in a file called prodcons.c. You may (and should!) use the source code
from any of the class examples as your starting point and/or to guide your solution. Be sure to
indicate clearly which code you borrow and which code you add or modify.

See the examples and man pages for more information on POSIX threads and POSIX semaphores.
Please don’t hesitate to ask questions!

Submission
Commit and push!

Grading
This assignment will be graded out of 25 points.

2



CSIS 330 Operating Systems Fall 2022

Feature Value Score
Arbitrary numbers of producers/consumers/items 5
Correct and efficient usage of POSIX semaphores 15
Documentation 4
Working Makefile 1
Total 25

3


