
Computer Science 330
Operating Systems
Siena College
Fall 2022

Programming Project 1: CPU Scheduler Simulation
Due: 11:59 PM, Thursday, September 29, 2022

In this programming project, you will be developing a program to simulate the flow of processes
through a model operating system.

You may work alone but are encouraged to work in groups of 2 or 3. Collaboration within a group
is, of course, unrestricted. You may discuss the project with members of other groups, but what
you turn in must be your own group’s work. Groups must be formed and those choosing to work
alone must declare this by no later than 11:59 PM, Thursday, September 22, 2022.

This project requires a significant design and programming effort and you will need to dedicate
some time to it consistently throughout the time from the assignment’s release until the due date.

You may develop your programs in any environment, as long as they can be compiled and executed
on noreaster. This should not be a problem for Java or Python 3 programs, but could be for C or
C++. If you wish to work in a programming language other than those, please ask first.

Getting Set Up
You will receive an email with the link to follow to set up your GitHub repository, which will be
named cpusched-proj-yourgitname, for this programming project. Only one member of
the group should follow the link to set up the repository on GitHub, then others should request a
link to be granted write access.

All GitHub repositories must be created with all group members having write access and all group
member names specified in the README.md file by 11:59 PM, Thursday, September 22, 2022.
This applies to those who choose to work alone as well!

Discrete Event Simulation
Discrete event simulation (DES) is a method used to model real world systems that can be decom-
posed into a series of logical events that happen at specific times. The main restriction on this kind
of system is that an event cannot affect the outcome of a prior event. When an event is generated,
it is assigned a timestamp, and is stored in an event queue (a priority queue). A logical clock is
maintained to represent the current simulation time. At any point in the simulation, the next event
to take place is at the head of the event queue. Since nothing interesting can happen between the
current simulation time and the time of the event at the head of the event queue, removal of an
event for processing allows the logical clock to be advanced immediately to that event’s times-
tamp. We know that we didn’t miss anything interesting during the time we skipped over, because
if something else was going to happen before that event, an event would have been in the system
that would come out of the event queue before this one.



CSIS 330 Operating Systems Fall 2022

Multiple events may have the same timestamp. This models events that happen concurrently. Even
though the events are processed sequentially by the simulator, they occur at the same logical time.
It does not matter which order you process such events in your simulator. Any tiebreaking ordering
results in an equally valid simulation result.

We will use this model to simulate CPU scheduling in a simple operating system. Processes arrive
in the system and take turns executing on one or more CPUs, possibly spending some time waiting
for I/O service. Each process remains in the system until its predetermined computational needs
are met. There are a small number of events that can occur that will affect the system, and it is
these events that drive the simulation.

System Description
Your program should implement the DES to model CPU scheduling using a queueing system, as
represented here:

I/O Complete

.

.

CPUs

.

I/O Subsystem

Ready
Queue

New Process Arrival

Dispatch

Quantum Expiration

Process
Complete

I/O Fault

Processes enter the system and wait for their turn on a CPU. They run on a CPU, possibly being
pre-empted by the scheduler or become blocked waiting for I/O service, until they have spent their
entire service time on a CPU, at which point they leave the system.

A logical clock is used to coordinate all events in the system; the “ticks” of the clock are measured
in (arbitrary) “time units.” The total simulation time is a parameter supplied by the user.

An input file specifies the frequency and length of new processes to be introduced into the system.
Each time a new process enters the system, an event is generated that will result in the creation of
the next process of the same type to enter the system. The format of the input file and the meaning
of its entries are described later in this document.

The ready queue contains the processes in the system that are ready to run on a CPU when no
CPU is available to run them. A process is selected from the front of the ready queue when a
CPU becomes available. If the ready queue is empty, a process entering the ready state should be
assigned to any idle CPU immediately.

2



CSIS 330 Operating Systems Fall 2022

Each process can spend up to, but not more than, one quantum on a CPU before it is switched out.
The quantum is a system-wide constant value, entered as a parameter by the user. To simulate a
non-preemptive scheduling system, the quantum parameter should be specified as 0.

When a process is assigned to a CPU, an event should immediately be generated that will remove
it from a CPU at a later time.

1. If the time remaining for the process to complete is less than the time to the next I/O fault
or the quantum length, the process will run to completion before it is required to leave the
CPU, so an event is generated that will cause the process to leave the system.

2. Else, if the time remaining for the process to I/O fault (see next item) is less than the quantum,
or scheduling is non-preemptive, the process will leave the CPU due to its next I/O fault, so
an event is generated that will cause the process to leave for I/O service.

3. Else the process’ quantum will expire before it completes or requires I/O. An event is gener-
ated that will return the process to the ready queue.

Context switch cost is entered as a parameter by the user and should be accounted for when gener-
ating events and gathering statistics.

A process executes for a set number of clock cycles (its burst time) between each I/O fault. This
number is constant on a per-process basis - it is determined for each process when it is created, and
remains the same for the duration of the process.

The time needed to service an I/O fault is determined for each process, and remains constant for
the lifetime of that process. We make the unrealistic assumption that the I/O subsystem can handle
an infinite number of requests at the same time with no loss of turnaround time. When each process
enters I/O service, an event is created to take place at the time of the service’s completion.

User-supplied Parameters
Your simulator should be controlled by a number of command-line parameters and an input file
describing the creation of new processes.

Those writing in C will find the getopt long(3) library function useful for parsing your
command-line parameters. See: https://github.com/SienaCSISOperatingSystems/
getopt-example

The remaining parameters are described in the process generation file. The format of the file is

ntypes
name0 c0 b0 a0 i0

name1 c1 b1 a1 i1

...
namentypes−1 cntypes−1 bntypes−1 antypes−1 intypes−1

3



CSIS 330 Operating Systems Fall 2022

Switch Description Default
−−procgen-file, -f File name for the process generation description file pg.txt

−−num-cpus, -c Number of CPUs 1
−−quantum, -q Quantum for pre-emptive scheduling 0

−−stop-time, -t Simulation stop time (none)
−−switch-time, -w Context switch cost 0
−−no-io-faults, -n Disables I/O faults

−−verbose, -v Enable verbose output
−−batch, -b Display parseable batch output
−−help, -h Display help message

The ntypes line specifies the number of process types to be used in the simulation. Each suc-
cessive line defines the parameters for one of those types. namej is a label for the process type,
cj is the average CPU time requirement for processes of this type, bj is the average burst time for
processes of this type, aj is the average interarrival time for processes of this type, and ij is the
average time required to service each I/O fault for processes of this type.

For example,

2
interactive 20 10 80 5
batch 500 250 1000 10

specifies two process types, one called “interactive” with average CPU service time 20, average
burst time 10, average interarrival time 80, and average I/O service time per fault of 5, and a second
called “batch” with average CPU service time 500, average burst time 250, average interarrival time
1000, and average I/O service time per fault of 10.

During a simulation, you will need to generate random times with a given average. For example,
you might want to generate process interarrival times that average out to 100. In order to allow
a wide range of possible values and to simulate realistic situations more accurately, use an expo-
nential distribution of values with the given average value. This will result in a larger number of
smaller values and a smaller number of larger values. In other circumstances, it may make more
sense to use a uniform distribution, where values are randomly selected within an interval. C func-
tions that provide random values for both exponential and uniform distributions are available in
random.c in your repository. You are welcome to use these functions or write your own.

For each process type, use an exponential distribution to generate process interarrival times aver-
aging the given value. When generating new processes, use an exponential distribution to generate
the new process’ CPU service time and I/O service time and a uniform distribution to generate the
burst time (in the range between 1 and twice the average burst time specified).

Statistics to Gather

4



CSIS 330 Operating Systems Fall 2022

While it’s obviously true that any excuse to build a discrete event simulator is a good excuse to
build a discete event simulator, the whole point of the simulation is to be able gather statistics to
see how a given system performs over time. You should gather and report the following statistics:

• Length of the simulation in time units and number of events processed.

• Final and average length of the event queue.

• Final and average length of the ready queue.

• For each process type:

– the number of processes of this type completed.

– the throughput (number of processes of this type completed per unit time).

– last, longest, and average turnaround times for processes of this type.

• For each CPU in the system:

– active time (time spent running jobs), context switch time, and idle time.

Report each as a raw amount of time and as a percentage of simulation time.

Program Outline
Your program’s execution should follow this approach:

read and set parameters
create an empty event queue, empty ready queue, initialize stats
insert initial process creation events into event queue
while (simulation time not expired)

take next event from event queue
advance time to next event’s timestamp
process event (move job among queues or CPU, create new job,

add new events, update statistics, etc)
report statistics

Notes

• You may develop your code anywhere, but make sure it works on noreaster or on a Mac.

• You can run the reference solution on noreaster. It can be found in /home/cs330/
cpusched, with the executable named cpusim and a few example process generation
files. You should be able to run the executable, but you will not be able to copy it.

5



CSIS 330 Operating Systems Fall 2022

Frequently Asked Questions
Additional questions and their answers will be added here as they are asked (and answered).

• Q: Does there need to be a structure to represent each CPU?

A: You don’t necessarily need a data structure for the CPU, but at a minimum you’ll need a
place keep per-CPU stats. A struct might be appropriate there.

• Q: Your sample executable does not actually stop at the specified simulation stop time. Why
not?

A: The simulation can’t stop at the exact time unless there happens to be an event in the
event queue that will advance the global clock to precisely that time. It’s up to you to decide
if you want to take extra care to stop the gathering of statistics at the specified simulation
stop time or at the time of the first event that happens at or after that time.

• Q: If we generate our own PIDs for the “process” objects, should we use some mechanism
to make them unique? If they go all the way to LONG MAX or w/e they won’t be.

A: I’ve never worried about running out of process ids - I use a long and just let it grow. I
suppose it could go negative eventually and the program likely wouldn’t care.

• Q: Do you have any objection to the use of global variables to store several important things?

A: No objection to globals, and my reference solution makes use of them to avoid passing
around a lot of pointers.

• Q: Is it OK to use examples and code from other classes in this project?

A: Yes, with appropriate attribution.

• Q: Should I use threads to represent the concurrency in the system?

A: No! This should be a single-threaded program. The concurrency is totally logical, and
happens through the timestamps on the events.

Simulator Submission and Evaluation
Make sure that all group members’ names appear in all files. Evidence of significant contributions
for all group members should be included in commit messages.

By 11:59 PM, Thursday, September 29, 2022, commit and push your documented source code,
with a brief entry in the README.md file that describes how to build and run your simulator.
Include a Makefile or an appropriate equivalent to allow easy compilation.

Correctness, design, documentation, style, and efficiency will be considered when assigning a
grade. All files should compile without warnings when using gcc’s -Wall option, or the equiva-
lent in the implementation language.

6



CSIS 330 Operating Systems Fall 2022

Grading
This assignment will be graded out of 75 points.

Feature Value Score
Makefile, build instructions, README 2
-h (help output) 1
Command-line parameter parsing 3
Basic DES setup: event queue-based processing 10
Process generation file 5
CPU Scheduling simulation correctness 25
Gathering and reporting of statistics 15
Design and Style 5
Documentation 7
Simulation efficiency 2
Total 75

7


