
Computer Science 330
Operating Systems
Siena College
Fall 2020

Topic Notes: Processes and Threads

What is a process? Our text defines it as “an instance of a program being executed by an OS” (a
good definition).

Definitions from other textbooks:

• a program in execution

• an abstraction of a running program

• an asynchronous activity

• the “locus of control” of a program in execution

• that which is manifest by the existence of a process control block in the OS

• that entity which is assigned to processors

• the “dispatchable” unit

• the “animated spirit” of a procedure

A process is sequential.

Parts of a process:

• program code (text section)

• program counter and other registers

• stack (local variables and function call information)

• data (global variables)

• heap (dynamically allocated variables)

A typical multiprogrammed system has many processes at any time. Try ps -aux or ps -ef to
see the processes on your favorite Unix system. Only one of these processes can be on a CPU at a
time.

If we look at the ps output on a Unix system, we will see a lot of processes owned by root, the
“super-user”. Many of these are essential parts of the system and are intended to continue running
as long as the system is up. These processes are called daemons and are the motivation for the
BSD logo.

CSIS 330 Operating Systems Fall 2020

So if a process is “in the system” but not executing on the CPU, where is it?

States of a process:

new

ready

terminated

running

waiting

creation
preemption

dispatch

I/O event
I/O completion

exit

What information do we need to let a process transition among these states?

Think about it in terms of what a person needs to do to get back to what he or she was doing before
being interrupted.

• you’re sitting in the lab working hard on your OS project and someone interrupts you

• your attention shifts and you go off and do something else for a while

• then when you need to come back to the work, you need to remember what you were doing,
and where you were in the process of doing it

We do this all the time, and many of us are really pretty good at it. A processor can’t just pick
up where it left off, unless we carefully remember everything it was doing when it was so rudely
interrupted.

A process control block (PCB) is used to store the information needed to save and restore a process.
This information includes:

• Process state (running, waiting, ready)

• Process identifier (PID)

• Program counter

• Other CPU registers

• CPU scheduling information

• Memory-management information

• Accounting information

• I/O status information

In many Unix systems, the PCB is divided between two structures:

2

CSIS 330 Operating Systems Fall 2020

• The proc structure, which holds the process information needed at all times, even when the
process is not active (swapped out).

• The user structure, which holds other information about the process.

Historically, it was important to keep as much in the user structure and as little in the proc structure
as possible, because of memory constraints. As the size of memory has grown, the amount of
memory used by PCBs has become less significant, so this division has become less important.

In FreeBSD, for example, most of the information is now in the proc structure. We can see
it on your favorite FreeBSD 12.1 system (noreaster) in /usr/src/sys/sys/proc.h. See
struct proc defined starting at line 565.

The user structure is in /usr/src/sys/sys/user.h (line 242), and it is somewhat smaller.
It contains per-thread information. Part of this is a struct kinfo proc, which in turn in-
cludes a struct pcb, which is an architecture-dependent structure defined in /usr/src/
sys/amd64/include/pcb.h (line 53). Here you find the actual registers that need to be
saved when a process is removed from the CPU. For comparison, check out the MIPS version in
/usr/src/sys/mips/include (it’s smaller!).

The transition from one process running on the CPU to another is called a context switch. This
is pure overhead, so it needs to be fast. Some systems do it faster than others. Hardware support
helps - more on that later.

This requires at least two levels of privilege, or modes of operation:

• User mode: execution of user processes. Processes in this mode have restrictions on what
they can do. The process can only access its own memory, cannot perform privileged in-
structions, etc.

• Monitor mode (kernel mode, system mode): This is operating system execution. In this
mode, the process can do things like switch among user processes, shut down the system,
manage memory at a lower level, etc.

Hardware support is needed. We need privileged instructions can be executed only while in monitor
mode. We’ll talk more about this as we go forward.

Process Creation/Deletion
In Unix, every process (except for the first) is created from an existing process. See ps again for
examples. The processes form a tree, with the root being the init process (PID=1).

When a new process is created, what information does it inherit from or share with its parent?

• Does it get any resources that were allocated to the parent?

• Does the parent wait for the child to complete, or do they execute concurrently?

3

CSIS 330 Operating Systems Fall 2020

• Is the child a duplicate of the parent, or is it something completely different?

• If it’s a duplicate, how much context do they share?

• Can the parent terminate before the child?

Creation of a new process is a highly privileged operation. It requires the allocation of a new PCB,
insertion of this PCB into system data structures, among other operations that we would not trust
to regular “user” programs.

The typical solution to this is that such operations are provided through system calls. These system
calls are functions that are part of the operating system and are permitted to perform some tasks
that a normal process is not able to do on its own. In effect, the program temporarily gains a higher
privilege level while executing the system call (if the kernel grants the permission for the process
to execute the call).

In Unix, the fork() system call duplicates a process. The child is a copy of the parent - in
execution at the same point, the statement after the return from fork().

The return value indicates if you are the new process (the child) or the original process (the parent).

0 is child, > 0 means parent, -1 means failure (e.g., a process limit has been reached, permission
is denied)

A C program that wishes to create a new process will include code similar to this pattern:

pid=fork();
if (pid) {

parent stuff;
}
else {

child stuff;
}

A more complete program that uses fork() along with three other system calls (wait(),
getpid(), and getppid()) is in forking.c in the forking subdirectory of https:
//github.com/SienaCSISOperatingSystems/procsthreads-examples.

Some comments about this program:

First, run it to observe what happens. Note that there is only one copy of the printout before the
fork(), two of the one after. fork() is a very unusual function - you call it once, but it returns
twice!

How do we know how these work? See the man pages! The fork page tells us what we need to
include, and how to use it.

How about wait? If we issue the command man wait, we get the man page for builtin,
as there is a built-in wait command in the shell. To get the page we want, we need to specify a

4

CSIS 330 Operating Systems Fall 2020

manual “section.” Section 2 is the system calls section. The command man 2 wait will get us
the page we want.

Are there really two processes? Let’s look at the output of ps as the program runs.

Again, these system calls let you, as a normal user, do things that only the system should be able
to do. Your “user mode” process can get access to “kernel mode” functionality through these calls.
But since you are accessing this functionality through the system call interface, there is control
over your ability to do so.

How many processes can we create on various systems? Where does this limit come from? Can
we create enough processes to take down a system?

We can see this in the forkbomb program in the same repository.

The FreeBSD implementation of fork() is in /usr/src/sys/kern/kern_fork.c.

Things to note here (for an example – don’t worry about the details):

• the action is happening in fork1(), which starts on line 810.

• Line 922: actually allocate the new proc structure with uma zalloc, a special malloc
basically (see zalloc(9)).

• Line 981: initialize proc table entry

• Line 993: final checks to make sure a new process is allowed based on global system limits,
if so, call do fork to create it.

Note that nprocs is the kernel variable that stores the number of active processes in the
system, maxproc is the upper limit on the number of processes allowed.

Note also how a regular user is restricted from creating a process if the system is within 10
of the overall limit.

• Line 795: set on run queue, so the child can start executing.

We will see that in many cases, you will want to use the vfork(2) system call instead of
fork(). This one doesn’t copy the address space of the process – it assumes you are going
to replace the newly created process’ program with a new one. More on this later.

In the Windows world, there is a CreateProcess() Windows API call (the Windows API is
like a POSIX for Windows) that creates a new process and loads the correct program into that new
process.

Soon we will consider more system calls, including ones that let you do things more interesting
than making a copy of yourself.

There is also the issue of how all this gets started – how does that first process get started that
forks everything else?

5

CSIS 330 Operating Systems Fall 2020

Processes may need to communicate with each other in some more interesting way than making
copies of themselves. We will see a number of ways this can be done, including the use of a small
chunk of POSIX shared memory.

We will see examples of how to create a shared memory segment that can be accessed by your
parent and child process.

Another possibility is to have processes pass messages to each other over the network or through
the file system.

We will spend a good chunk of time later this semester on cooperating processes.

Threads/Lightweight Processes
Some of you may be familiar with Java threads, especially if you did advanced programming with
me. These gave you the ability to have your programs doing more than one thing at a time. Such a
program is called multithreaded.

Threads are a stripped-down form of a process:

• A task or process can contain multiple threads

• Threads share process context

• Threads are asynchronous

• Threads have less context than processes

• Threads can be created/destroyed at a lower cost than processes

• Threads cooperate to do a process in parallel with (relatively) fine granularity of parallelism

• Threads are well-suited to symmetric multiprocessors (SMPs) and multi-core systems

Threads can be useful even in single-user multitasking systems:

• Foreground and background work: one thread to deal with user input, another to update
display, etc such as in a spreadsheet or word processor.

• Asynchronous processing: auto-save features, background computation.

• Speed execution: compute with one batch of data while reading another. Your process can
be in I/O and on the CPU at the same time!

• Organizing programs: cleaner and more elegant program design.

A “normal” single-thread process has its program text, global address space, a stack, and a PC.

6

CSIS 330 Operating Systems Fall 2020

A multithreaded process has its program text, a single shared global address space, but a stack and
a PC for each thread.

Each thread also needs to be able to access the registers when it’s on a CPU, so while a context
switch between threads will not need to save and restore as much as a context switch between
processes, but it will still need to save registers.

Multicore Programming
Multithreaded programs are well suited to take advantage of the multiple processing cores found
in most modern computers. But writing a program to do so correctly and efficiently is challenging.

The following are some challenges that must be overcome:

• Dividing activities – the program needs to be broken down into separate tasks that can be
run concurrently.

• Load balance – the tasks need to perform similar amounts of work since the entire program
would run only as quickly as the slowest (most heavily loaded) task.

• Data partitioning – the data needed by each task should be associated with that task.

• Data dependency – if the execution of one task depends on a result computed by a second,
synchronization must be performed to make sure the result from the second task is available
before the first attempts to use it.

• Testing and debugging – execution of multithreaded programs includes tasks that execute
concurrently or in different interleavings. It is very difficult to ensure that a program works
correctly for all possible interleavings.

Sample thread application
We consider an NFS (network file system) server. We may look in more detail at network file
services later in the semester, but for now we just think of the server as having to respond to many
read/write/list requests from clients.

Each client that contacts the server needs attention from the server process. A single thread of
execution would be unreasonable for all but the most lightly-loaded servers, as requests would
need to be served in order. This could potentially cause long delays in service time. Realistically,
a new process or thread needs to be created for each request.

With “heavyweight” processes, each request from the network would require a full-fledged process
creation. A series of requests would result in many short-duration processes being created and
destroyed. Significant overhead would result.

With multithreading, a single NFS server task (a process) can exist, and a new thread can be
created within the task for each request (“pop-up” threads). There is less overhead, plus if there
are multiple CPUs available, threads can be assigned to each for faster performance.

7

CSIS 330 Operating Systems Fall 2020

User Threads vs. Kernel Threads
Threads may be implemented within a process (in “user space”) or by the kernel (in “kernel
space”).

With user threads, the kernel sees only the main process, and the process itself is responsible for
the management (creation, activation, switching, destruction) of the threads.

With kernel threads, the kernel takes care of all that. The kernel schedules not just the process, but
the thread.

There are significant advantages and disadvantages to each. Some systems provide just one, some
systems, such as Solaris, provide both.

One big thing is that with user threads, it is often the case that when a user thread blocks (such as
for I/O service), the entire process blocks, even if some other threads could continue. With kernel
threads, one thread can block while others continue.

The text describes these in a much more detail. Nearly all modern operating systems support kernel
threads.

pthreads, POSIX threads
We saw how to use fork() to create processes in Unix. We can also create threads with system
calls. Thread support in modern operating systems includes POSIX threads, Java threads, and
Windows threads. We will look at and make heaviest use of just one type: POSIX threads, usually
known as “pthreads”.

Instead of creating a copy of the process like fork(), create a new thread, and that thread will
call a function within the current task.

This new thread is running the same copy of the program and shares data with other threads within
the process. Any global variables in your program are accessible to all threads. Local variables
are directly accessible only to the thread in which they were created, though the memory can be
shared by passing pointers to your thread functions.

The basic pthread functions are:

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void * (*start_routine)(void *),
void *arg);

int pthread_join(pthread_t thread, void **status);

void pthread_exit(void *value_ptr);

• pthread create(3) – As expected, this creates a new thread. It takes 4 arguments:

8

CSIS 330 Operating Systems Fall 2020

1. The first is a pointer to a variable of type pthread t. Upon return, this contains a
thread identifier that is used later in pthread join().

2. The second is a pointer to a pthread attr t that specifies thread creation attributes.
In our initial examples, we pass in NULL, which specifies that the thread should be
created using the system default attributes.

3. The third argument is a pointer to a function that will be called when the thread is
started. This function must take a single parameter of type void * and return void
*.

4. The fourth parameter is the pointer that will be passed as the argument to the thread
function.

• pthread exit(3) – This causes the calling thread to exit. This is called implicitly if
the thread function returns. Its argument is a return status value, which can be retrieved by
pthread join().

• pthread join(3) – This causes the calling thread to block until the thread with the iden-
tifier passed as the first argument to pthread join() has exited. The second argument is
a pointer to a location where the return status passed to pthread exit() can be stored.
In the pthreadhello program, we pass in NULL, and hence ignore the value.

In the https://github.com/SienaCSISOperatingSystems/procsthreads-examples
repository’s pthreadhello directory, we have a first pthreads program.

On all three systems we will use (FreeBSD, Linux, Mac OS X), compilation of a pthreads program
requires that we pass the flag -pthread to gcc to indicate that it should use thread-safe libraries
(more on that idea later).

It is also a good idea to do some extra initialization, to make sure the system will allow your threads
to make use of all available processors. It may, by default, allow only one thread in your program
to be executing at any given time. If your program will create up to n concurrent threads, you
should make the call:

pthread_setconcurrency(n+1);

somewhere before your first thread creation. The “+1” is needed to account for the original thread
plus the n you plan to create.

You may also want to specify actual attributes as the second argument to pthread create().
To do this, declare a variable for the attributes:

pthread_attr_t attr;

and initialize it with:

9

CSIS 330 Operating Systems Fall 2020

pthread_attr_init(&attr);

and set parameters on the attributes with calls such as:

pthread_attr_setscope(&attr, PTHREAD_SCOPE_PROCESS);

Then, you can pass in &attr as the second parameter to pthread create().

To get a better idea about what context is shared by threads and what context is shared by processes,
we consider this example what shared in the same repository.

Finally, as a slightly more interesting example, from the same repository, proctree threads
builds a “tree” of threads to a depth given on the command line. It includes calls to pthread self().
This function returns the thread identifier of the calling thread.

We will use pthreads in several class examples and in lab. We will examine a number of additional
pthread functions as we need them in our examples and assignments.

10

