
Computer Science 330
Operating Systems
Siena College
Fall 2020

Lab 8: Working Set Simulator
Due: 11:59 PM, Wednesday, November 4, 2020

This lab task will investigate the ideas of working sets to allocate frames of physical memory to a
(simulated) process in execution.

You may work individually or in a groups of two or three.

Learning goals:

1. To gain a better understanding of how the working set model for memory frame allocation
works

2. To see how a series of machine-code-like instructions generates a page reference string

3. To study the behavior of a particular reference string with the working set model, and relate
that behavior back to the program that generated that string of references

Getting Set Up
You will receive an email with the link to follow to set up your GitHub repository, which will be
named ws-lab-yourgitname, for this lab. Only one member of the group should follow the
link to set up the repository on GitHub, then others should request a link to be granted write access.

Page Reference String
In order to investigate the working set allocation scheme through simulation, we use a page refer-
ence string that represents a sequence of memory accesses, and simulate what would happen in a
working set allocation given that access string.

We will consider a “pseudo-realistic” page reference string that corresponds to the following pro-
gram segment, written in a C-like language:

const int n=10;
int i, j, A[n], B[n], C[n], temp;

for (i=1; i<=n; i++) {
A[i]=i;
B[i]=n-i+1;

}
for (i=1; i<=n; i++) {

CSIS 330 Operating Systems Fall 2020

temp=0;
for (j=i; j<=n; j++) {
temp=temp+A[n+i-j]*B[j];

}
C[i]=temp;

}

Using a hypothetical machine with registers denoted by Ri and a fixed instruction size of 1 word
per instruction, the machine language version of this program is loaded in virtual address space
(with page size 4K, i.e., 1024 words) as follows:

0x2FBC (R1) <- ONE Index i
0x2FC0 (R2) <- n Loop bound
0x2FC4 compare R1,R2 Test i>n
0x2FC8 branch_greater + 0x20
0x2FCC A(R1) <- (R1) Compute A[i]
0x2FD0 (R0) <- n Compute B[i]
0x2FD4 (R0) <- (R0) - (R1)
0x2FD8 (R0) <- (R0) + ONE
0x2FDC B(R1) <- (R0)
0x2FE0 (R1) <- (R1) + ONE Increment i
0x2FE4 branch * - 0x20
0x2FE8 (R1) <- ONE Index i
0x2FEC (R2) <- n Loop bound
0x2FF0 compare R1,R2 Test i>n
0x2FF4 branch_greater + 0x50
0x2FF8 (R0) <- ZERO temp <- 0
0x2FFC temp <- (R0)
0x3000 (R3) <- (R1) Index j
0x3004 (R4) <- n Loop bound
0x3008 compare R3,R4 Test j>n
0x300C branch_greater + 0x20
0x3010 (R0) <- n Compute A[n+i-j]
0x3014 (R0) <- (R0) + (R1)
0x3018 (R0) <- (R0) - (R3)
0x301C (R5) <- A(R0)
0x3020 (R6) <- B(R3) Compute B[j]
0x3024 (R5) <- (R5) * (R6)
0x3028 (R5) <- (R5) + temp
0x302C temp <- (R5)
0x3030 (R3) <- (R3) + ONE Increment j
0x3034 branch - 0x20
0x3038 C(R1) <- (R5) Compute C[i]
0x303C (R1) <- (R1) + ONE Increment i
0x3040 branch - 0x50

...
0x6000 Storage for C

2

CSIS 330 Operating Systems Fall 2020

0x7000 Storage for ONE
0x7004 Storage for n
0x7008 Storage for temp
0x700C Storage for ZERO
0x8000 Storage for A
0x9000 Storage for B

Upon execution of this program segment, the following reference string is generated:

ω= 272722(28272272927222)n272722(272733733(373338393373737333)n−i+13637322)n

Question 1:
State the instruction or variable reference that causes each page reference up to the end of the
first parenthesized portion of the reference string. (5 points)

Question 2:
How long should this string be for n = 10? (2 points)

Working Set Simulator
We will work together to develop a C program (if you want to write your own, you may do so in the
language of your choice for 15 bonus points) that simulates (yes, another simulator) the run-time
behavior of this program segment when a working set memory management policy is used. The
program will print values:

∆ = window size
P (∆) = total number of page faults
W (∆) = average working set size

F (∆) = P (∆)
|ω| = average page fault rate

The main program takes the value of ∆ as a command-line parameter. This will allow you to write
a script (in your favorite scripting language) that runs the program repeatedly for the values of ∆
required. The value of ∆ is specified with the -d flag. A debugging mode can be turned on by -D,
which shows how the working set changes as each page is referenced. The program also takes a
flag -n to specify n in the reference string used. The default is 10, and you may use that to generate
your plots. You are encouraged to try other values of n, but you need only plot for n = 10.

Note that as each entry in the reference string (page) is processed, one of four things will happen to
the working set. (i) the page is added to the set, and none is removed, (ii) the page is added to the
set and one old page is removed, (iii) the page is already in the set and another page is removed,
or (iv) the page is already in the set and no other page is removed.

Our program will hard-code the reference string (actually, generate it on the fly) but the design will
be modular enough that you could replace one function to generate a different reference string.

3

CSIS 330 Operating Systems Fall 2020

A Brief Simulation Study
Use the simulator to generate the data for, and then plot the following curves:

1. ∆ vs. P (∆),

2. ∆ vs. W (∆), and

3. ∆ vs. 1/F (∆),

for values of ∆ ranging from 1 to 200.

Question 3:
Include these plots in your repository. (15 points)

Question 4:
From the plot of ∆ vs. 1/F (∆), explain the cause of all knees in the graph in terms of
program (or reference string) structure. (10 points)

Question 5:
Is the strategy used by this program one that could be used by a real system to keep track of
a process’ working set? Why or why not? (3 points)

Submission
Commit and push!

Grading
This assignment will be graded out of 45 points.

Feature Value Score
Question 1 5
Question 2 2
Participation in simulator development 10
Question 3: plots 15
Question 4 10
Question 5 3
Simulator Implementation (Bonus, up to 15) 0
Total 45

4

