
Computer Science 330
Operating Systems
Siena College
Fall 2020

Lab 4: System V Shared Memory
Due: 11:59 PM, Monday, September 14, 2020

In this lab, you will see how to use System V shared memory with Unix processes.

You may work alone or with a partner or two on this lab.

Learning goals:

1. To learn about System V shared memory

2. To use System V shared memory to implement communication between Unix processes

3. To gain experience using pointers

Getting Set Up
You will receive an email with the link to follow to set up your GitHub repository, which will be
named shmem-lab-yourgitname, for this lab. Only one member of the group should follow
the link to set up the repository on GitHub, then others should request a link to be granted write
access.

Using Class Examples

Question 1:
Using the virtualized Linux system that you can run under OpenNebula, compile and run the
forkbomb program. How many processes can you create before you either get an error
message (or the system crashes)? (2 points)

Question 2:
Draw a memory diagram showing all of the variables in existence in the pthreadhello
example when both child threads are executing. (10 points)

fork() Practice
The Syracuse Sequence starting at a given positive integer n is defined by repeated application of
the function

f(n) =

{
n
2

if n is even
3n+ 1 if n is odd



CSIS 330 Operating Systems Fall 2020

The sequence ends when the value reaches 1. It is not known if all values of n eventually lead to
1, but no one has found a value for which it doesn’t or proven that one must exist.

Practice Program:
Write a program forksyr.c that computes and prints the Syracuse sequence within a child
process created by fork. Include a Makefile that compiles this program into an exe-
cutable called forksyr. (10 points)

Notes:

• Do some error checking. If your program is run without a command-line argument, print a
“Usage” line. If your program is given a negative starting value for the sequence, print an
appropriate error message.

• If you store the values in the sequence with int values, you will notice they could overflow
the storage capabilities of the data type. You can delay this somewhat by using long values.
Even then, you could overflow the values with certain starting values. In this case, also print
an error message.

Adding Shared Memory

Practice Program:
Now, create a second version of your program that uses System V shared memory. The
child process will be responsible for computing the entire sequence, but the parent process
will be responsible for printing it. Call your program forksyrshared.c and include a
Makefile that compiles this program into forksyrshared. (25 points)

Once your program is working, add a call to sleep(2) (recall that “2” here refers to the manual
section, not the argument to pass) to your program before you detach and free the shared memory
segment. In a separate window, use the ipcs command to see that your shared memory segment
is listed, and that it goes away when your program terminates. Save this output and include it in a
file ipcs.out to be included in your submission.

Output Capture:
ipcs.out for 3 point(s)

Submission
Commit and push!

Grading
This assignment will be graded out of 50 points.

2



CSIS 330 Operating Systems Fall 2020

Feature Value Score
Question 1, forkbomb 2
Question 2, memory diagram 10
forksyr.c 10
forksyrshared.c 25
ipcs.out 3
Total 50

3


