Computer Science 324
M [] (Computer Architecture
_— Mount Holyoke College
MOUNT HOLYOKE COLLEGE Fa” 2009

Topic Notes: Sequential Circuits

Let’s think about how life can be bad for a circuit.

Edge Detection

Consider this one:

What is the output here? It should be always 0, right?
But think about what happens when the input changes from 0 to 1.
When it's 0, the inverter is feeding a 1 and the direct inpueeding O to the AND.

Switch the input to 1, and the 1 gets to the AND right away,jitst a wire, but it takes some time
for the inverter to react to its new input (gate delay), SOAND is seeing 2 1’s for a brief time,
and produces a 1.

But soon after, the inverter does its thing and the AND gate gl from the inverter and things
go back to the expected output of 0.

If the input is switched 0 to 1 and back over time, here’s wizgidens:

L]

The length of time that the output is 1 after the switch of tiyauit from 0 to 1 depends on the gate
delay of the inverter.

0

CS 324 Computer Architecture Fall 2009

If we wanted it to stay 1 a little longer, we could do that bytmg a few (odd number of) inverters
in series.

We have built deading edge detector (LED).
On a chip, an LED is denoted:

So this gate delay that seemed mostly like an annoyance waevene computing something with
a circuit might actually be beneficial.

However, if we are building a circuit and this kind of behawwomes up unintentionally, it can be
seen as glitch in our circuit.

Why might we want this?

If we want a one-time pulse out of a signal that is going to gl tor a while. We'll see applica-
tions soon.

How abouttrailing edge detection (TED)?

Can we just invert the input to get one?

..

This seems kind of weird. Do we really want to depend on thsl kif thing?

Clocks

Now consider this circuit:

....................................

CS 324 Computer Architecture Fall 2009

The electrons can go around the wire from the output backeanghut very quickly — something
around half the speed of light, maybe more.

However, the gate delay of the inverter will take some time.

So what happens?

_ N

A clock! An oscillating circuit that cycles back and forth betweear@ 1 at a fixed rate.

We can hook this up in Logisim:

[‘_‘;-_-.9_
1y

Logism Circuit:
/ home/jterescol/ shared/ cs324/ exanpl es/ | ogi si m si npl ecl ock.circ

How about this one?

This has two possible states. 0 on the left, 1 on the right,am the left, O on the right. This is a
bistable circuit.

If we put a 1 on one side for a bit, that side gets 1, the othex @elf we ground one side for a bit,
that side gets 0, the other gets 1.

So after a short delay, it remembers the value put on.
This is the simplest “latch” device. More on this in a minute.

Add a third inverter? We get a clock with a period three tintggker than the original, since there
are three gate delays instead of one.

CS 324 Computer Architecture Fall 2009

1

—
A

%1

Logism Circuit:
/ home/ j t er esco/ shar ed/ cs324/ exanpl es/ | ogi si nl sl owercl ock.circ

This is a cheap, quick way to build a clock.

L atches and Flip-Flops

SR Latchesand Flip-Flops
We will build on the idea of the bistable circuit to constragtuits that can remember values.

First notice that a NOR gate can be set up as a “controllalbtier”:

—

[

If the control is O, this behaves like an inverter.
When control is 1, the output is always O.

With this, we can build ai$-R Latch:

el I @Qbar

Rlx1

Logisim Circuit:
/[home/ j teresco/ shared/ cs324/ exanpl es/l ogisinm srlatch.circ

CS 324 Computer Architecture Fall 2009

At any given time, it has a stable value wh&mand R are O.

If Ris presentedal,itwillmak@ =0,Q =1

WhenR is returned to O, it maintains that value.

S is the mirror image, and settirgto 1, Q becomes 1 an@ becomes 0.
WhenS' is 0 again, the value remains.

They are so named becausés a “set” andR is a “reset”.

There is no extra cost to getting bathand@ out of the latch, which is convenient when this is
feeding a circuit that may want an input and its inverse bg#ilable. We can save an inverter.

It is also possible to build an S-R Latch from NAND gates (kh@bout how — you’ll do it in lab).

We can augment our S-R Latch to change input only when a clgalakis high (to make sure we
only set or reset when we really mean to do so):

Slx 11

— Qbar
=1

CLE| L

Logism Circuit:
/ home/ j t eresco/ shar ed/ cs324/ exanpl es/ | ogi si nf cl ockedsrl atch.circ
This is aClocked SR Latch.

It changes value only when the clock is high.

But we may want to be even more restrictive and haveSttaad R lines interpreted only on the
rising edge of the clock (the brief moment when it switchesfiO to 1).

We do this by inserting a leading edge detector after thekcloc

CS 324 Computer Architecture Fall 2009

This is aClocked SR Flip-Flop.
It is a provided building block in Logisim.

In all of these S-R latches and flip-flops, what happens if we lthS and R high at the same
time?

Both @ and@ will be 0 when those inputs are being presented. When thesrimth go back to
0, a race condition will occur and the circuit will fall intane state or the other.

D-Type Flip-Flops

The race condition is not a desirable feature. An altereativ

D xl-.

p— Qbar

CLE| L=

+j:>¢1 @

Logisim Circuit:
/ hone/ j t eresco/ shar ed/ cs324/ exanpl es/ | ogi si m dtypeflipflop.circ

This is theClocked D-type Flip-Flop.

We present the desired output ordoand it makes sure we feed in appropriate values téthad
R parts of our circuit.

The symbol for the D-type Flip-Flop:

CS 324 Computer Architecture Fall 2009

D Q

D CLK Q

These are the main component of SRAM (typically used in L2 each
Since one ofD and D must be 1, every leading edge attempts to set the state oiirtit.c

This means that the inpdi? must be present for every clock cycle. This is OK, as long asordy
send a clock pulse when there is an appropriate valul.on

J-K Flip-Flops

Consider this approach, which augments the S-R Latch:

L
Jpd rv @Qt}ar
CLE | L= 1
— Q
I [1
r

Logisim Circuit:
/ honme/jteresco/ shared/ cs324/ exanpl es/logisimjklatch.circ

This is a J-K Latch.
The feedback frond) andQ:

1. Allows inputJ to pass through t§'if @ is low and the clock goes high, and
2. allows inputK to pass through t& if) is high and the clock goes high.

SoifQ is set, it allows a reset. I is set, it allows a set.
So what happens if botlh and K are set when the clock goes high?
Toggle!

So this makes more sense as a flip-flop, where the CLK input igglq@iovided by a LED. The
inputsJ and K are sampled briefly on the leading edge of the clock.

7

CS 324 Computer Architecture Fall 2009

Otherwise, the/ and K both 1 case will lead to continued toggling.
Here’s our symbol for the J-K Flip-Flop:

> CLK

That>CLK means an leading edge-detected input nadied .

We have a very flexible device that allows 4 possibilities wttee CLK input goes high:

1. J =0, K =0: Q remains unchanged
2. J=1,K=0:setQtol

3. J=0,K=1.setto0

4. J =1, K = 1: toggle@

T-type Flip-Flops

So suppose we connect it up like this:

T—>cLk
1— K 0O

The inputT” is so-named because it will toggle the outputs.
This is a T-type flip-flop.
We could build these out of J-K flip-flops, or reduce the nunmddenputs to the AND gates.

Q
> T
Q

CS 324 Computer Architecture Fall 2009

Counters

Here’s one way to use T-type flip-flops:

Ol
Ol

Q Q
—D> T > T > T > T
Q Q Q Q

phio phil phi2 phi3

The output is a 4-bit counter!

Up/Down Counters

What if we connect up outpud instead ofQ) to the subsequent clocks?

Ol
Ol

Q Q
—> T > T > T > T
Q Q Q Q

phio phil phi2 phi3

Everything changes on the leading edge.
So we have a countdown device!

We can actually take our counter and make it a count up/dowicel®y adding another input line
calledUP/DOW N.

We pass along) if we have a 1 on this line, pass alogyif we have a 0.
Insert a 2-way MUX:
((Q AND UP/DOW N) OR (Q AND UP/DOW N))

CS 324 Computer Architecture Fall 2009

UP/DOWN
? ? |
A A A
D1 D1
CIolll i i °
—>> T Q > T Q > T Q > T
Q Q Q Q —‘
phi0 phil phi2 phi3
Synchronous Counters
But let’s look carefully at the timing of this.
CLK |
Phi0 ___| J
Phil
Phi2

I

e I

There is really a short gate delay period before each outhgit® updates in response to a rising
edge.

This could be very bad if we're waiting for a particular valgreaybe 0) to come up, and we see it
too soon.

This “skew” grows as the number of bits in the counter grows.

So this is called aasynchronous counter.

To fix this, we can feed our output of the aynchronous coumtter & register (a bunch of D flip-
flops):

10

CS 324 Computer Architecture Fall 2009

CLK ~ asynch
counter
D DDD
op (register)

The values can come out of the top counter asynchronouslwddon’t put them into our register
until the clock goes back down.

The asynchronous counter is triggered on the leading edgié e register is triggered on the
trailing edge.

This whole thing is aynchronous counter.

Something to think about: we can easily count up to powers btiRwhat if we want to count in
base 10?

11

