
Computer Science 324
Computer Architecture
Mount Holyoke College
Fall 2009

Topic Notes: Sequential Circuits

Let’s think about how life can be bad for a circuit.

Edge Detection
Consider this one:

What is the output here? It should be always 0, right?

But think about what happens when the input changes from 0 to 1.

When it’s 0, the inverter is feeding a 1 and the direct input is feeding 0 to the AND.

Switch the input to 1, and the 1 gets to the AND right away, it’sjust a wire, but it takes some time
for the inverter to react to its new input (gate delay), so theAND is seeing 2 1’s for a brief time,
and produces a 1.

But soon after, the inverter does its thing and the AND gate gets a 0 from the inverter and things
go back to the expected output of 0.

If the input is switched 0 to 1 and back over time, here’s what happens:

out
0

1

0

1
in

The length of time that the output is 1 after the switch of the input from 0 to 1 depends on the gate
delay of the inverter.



CS 324 Computer Architecture Fall 2009

If we wanted it to stay 1 a little longer, we could do that by putting a few (odd number of) inverters
in series.

We have built aleading edge detector (LED).

On a chip, an LED is denoted:

in

So this gate delay that seemed mostly like an annoyance when we were computing something with
a circuit might actually be beneficial.

However, if we are building a circuit and this kind of behavior comes up unintentionally, it can be
seen as aglitch in our circuit.

Why might we want this?

If we want a one-time pulse out of a signal that is going to be high for a while. We’ll see applica-
tions soon.

How abouttrailing edge detection (TED)?

Can we just invert the input to get one?

This seems kind of weird. Do we really want to depend on this kind of thing?

Clocks
Now consider this circuit:

2



CS 324 Computer Architecture Fall 2009

The electrons can go around the wire from the output back to the input very quickly – something
around half the speed of light, maybe more.

However, the gate delay of the inverter will take some time.

So what happens?

A clock! An oscillating circuit that cycles back and forth between 0and 1 at a fixed rate.

We can hook this up in Logisim:

Logisim Circuit:
/home/jteresco/shared/cs324/examples/logisim/simpleclock.circ

How about this one?

This has two possible states. 0 on the left, 1 on the right, or 1on the left, 0 on the right. This is a
bistable circuit.

If we put a 1 on one side for a bit, that side gets 1, the other gets 0. If we ground one side for a bit,
that side gets 0, the other gets 1.

So after a short delay, it remembers the value put on.

This is the simplest “latch” device. More on this in a minute.

Add a third inverter? We get a clock with a period three times longer than the original, since there
are three gate delays instead of one.

3



CS 324 Computer Architecture Fall 2009

Logisim Circuit:
/home/jteresco/shared/cs324/examples/logisim/slowerclock.circ

This is a cheap, quick way to build a clock.

Latches and Flip-Flops

S-R Latches and Flip-Flops

We will build on the idea of the bistable circuit to constructcircuits that can remember values.

First notice that a NOR gate can be set up as a “controllable inverter”:

If the control is 0, this behaves like an inverter.

When control is 1, the output is always 0.

With this, we can build anS-R Latch:

Logisim Circuit:
/home/jteresco/shared/cs324/examples/logisim/srlatch.circ

4



CS 324 Computer Architecture Fall 2009

At any given time, it has a stable value whenS andR are 0.

If R is presented a 1, it will makeQ = 0, Q = 1

WhenR is returned to 0, it maintains that value.

S is the mirror image, and settingS to 1,Q becomes 1 andQ becomes 0.

WhenS is 0 again, the value remains.

They are so named becauseS is a “set” andR is a “reset”.

There is no extra cost to getting bothQ andQ out of the latch, which is convenient when this is
feeding a circuit that may want an input and its inverse both available. We can save an inverter.

It is also possible to build an S-R Latch from NAND gates (think about how – you’ll do it in lab).

We can augment our S-R Latch to change input only when a clock signal is high (to make sure we
only set or reset when we really mean to do so):

Logisim Circuit:
/home/jteresco/shared/cs324/examples/logisim/clockedsrlatch.circ

This is aClocked S-R Latch.

It changes value only when the clock is high.

But we may want to be even more restrictive and have theS andR lines interpreted only on the
rising edge of the clock (the brief moment when it switches from 0 to 1).

We do this by inserting a leading edge detector after the clock.

5



CS 324 Computer Architecture Fall 2009

This is aClocked S-R Flip-Flop.

It is a provided building block in Logisim.

In all of these S-R latches and flip-flops, what happens if we have bothS andR high at the same
time?

Both Q andQ will be 0 when those inputs are being presented. When the inputs both go back to
0, a race condition will occur and the circuit will fall into one state or the other.

D-Type Flip-Flops

The race condition is not a desirable feature. An alternative:

Logisim Circuit:
/home/jteresco/shared/cs324/examples/logisim/dtypeflipflop.circ

This is theClocked D-type Flip-Flop.

We present the desired output ontoD and it makes sure we feed in appropriate values to theS and
R parts of our circuit.

The symbol for the D-type Flip-Flop:

6



CS 324 Computer Architecture Fall 2009

D

CLK Q

Q

These are the main component of SRAM (typically used in L2 cache).

Since one ofD andD must be 1, every leading edge attempts to set the state of the circuit.

This means that the inputD must be present for every clock cycle. This is OK, as long as you only
send a clock pulse when there is an appropriate value onD.

J-K Flip-Flops

Consider this approach, which augments the S-R Latch:

Logisim Circuit:
/home/jteresco/shared/cs324/examples/logisim/jklatch.circ

This is a J-K Latch.

The feedback fromQ andQ:

1. Allows inputJ to pass through toS if Q is low and the clock goes high, and

2. allows inputK to pass through toR if Q is high and the clock goes high.

So if Q is set, it allows a reset. IfQ is set, it allows a set.

So what happens if bothJ andK are set when the clock goes high?

Toggle!

So this makes more sense as a flip-flop, where the CLK input is being provided by a LED. The
inputsJ andK are sampled briefly on the leading edge of the clock.

7



CS 324 Computer Architecture Fall 2009

Otherwise, theJ andK both 1 case will lead to continued toggling.

Here’s our symbol for the J-K Flip-Flop:

CLK

J

K Q

Q

That>CLK means an leading edge-detected input namedCLK.

We have a very flexible device that allows 4 possibilities when the CLK input goes high:

1. J = 0, K = 0: Q remains unchanged

2. J = 1, K = 0: setQ to 1

3. J = 0, K = 1: setQ to 0

4. J = 1, K = 1: toggleQ

T-type Flip-Flops

So suppose we connect it up like this:

T
J

K Q

Q

CLK

1

1

The inputT is so-named because it will toggle the outputs.

This is a T-type flip-flop.

We could build these out of J-K flip-flops, or reduce the numberof inputs to the AND gates.

Q

Q

T

8



CS 324 Computer Architecture Fall 2009

Counters
Here’s one way to use T-type flip-flops:

phi3

Q

Q

T

Q

Q

T

Q

Q

T

Q

Q

T

phi0 phi1 phi2

The output is a 4-bit counter!

Up/Down Counters

What if we connect up outputQ instead ofQ to the subsequent clocks?

phi3

Q

Q

T

Q

Q

T

Q

Q

T

Q

Q

T

phi0 phi1 phi2

Everything changes on the leading edge.

So we have a countdown device!

We can actually take our counter and make it a count up/down device by adding another input line
calledUP/DOWN .

We pass alongQ if we have a 1 on this line, pass alongQ if we have a 0.

Insert a 2-way MUX:

((Q AND UP/DOWN ) OR (Q AND UP/DOWN ))

9



CS 324 Computer Architecture Fall 2009

T

Q

Q

T Q

D1

D0

A

Q

Q

Q

D1

D0

A
D1

D0

A

phi2

Q

Q

T

phi3phi0 phi1

Q

Q

T Q

M
U

X

UP/DOWN

M
U

X

M
U

X

Synchronous Counters

But let’s look carefully at the timing of this.

CLK

Phi0

Phi1

Phi2

There is really a short gate delay period before each output “digit” updates in response to a rising
edge.

This could be very bad if we’re waiting for a particular value(maybe 0) to come up, and we see it
too soon.

This “skew” grows as the number of bits in the counter grows.

So this is called anasynchronous counter.

To fix this, we can feed our output of the aynchronous counter into a register (a bunch of D flip-
flops):

10



CS 324 Computer Architecture Fall 2009

CLK

D D D D
(register)

asynch
counter

The values can come out of the top counter asynchronously, but we don’t put them into our register
until the clock goes back down.

The asynchronous counter is triggered on the leading edge, while the register is triggered on the
trailing edge.

This whole thing is asynchronous counter.

Something to think about: we can easily count up to powers of 2, but what if we want to count in
base 10?

11


