
Computer Science 324
Computer Architecture
Mount Holyoke College
Fall 2009

Topic Notes: Programming Parallel Computers

Why Parallel Computing?
Parallel computing sounds simple enough – when one computerisn’t powerful enough to solve
your problem, use more than one.

Before we start to think about how to use parallelism on a computer, let’s think about a parallel
approach to solving a “real-world” problem.

• Taking a census of South Hadley.

One person doing this would visit each house, count the people, and ask whatever questions
are supposed to be asked. This person would keep running counts. At the end, this person
has gathered everything.

If there are two people, they can work concurrently. Each visits some houses, and they need
to “report in” along the way or at the end to combine their information. But how to split up
the work?

– Each person could do what the individual was originally doing, but would check to
make sure each house along the way had not yet been counted.

– Each person could start at the town hall, get an address that has not yet been visited,
go visit it, then go back to the town hall to report the result and get another address to
visit. Someone at town hall keeps track of the cumulative totals. This is nice because
neither person will be left without work to do until the wholething is done. This is the
master-slave method of breaking up the work.

– The town could be split up beforehand. Each could get a randomly selected collection
of addresses to visit. Maybe one person takes all houses witheven street numbers
and the other all houses with odd street numbers. Or perhaps one person would take
everything west of Route 116 and the other everything east of Route 116. The choice
of how to divide up the town may have a big effect on the total cost. There could be
excessive travel if one person walks right past a house that has not yet been visited.
Also, one person could finish completely while the other still has a lot of work to do.
This is adomain decomposition approach.

• Grading a stack of exams. Suppose each has several questions. Again, assume two graders
to start.

– Each person could take half of the stack. Simple enough. But westill have the potential
of one person finishing before the other.

CS 324 Computer Architecture Fall 2009

– Each person could take a paper from the “ungraded” stack, grade it, then put it into the
“graded” stack.

– Perhaps it makes more sense to have each person grade half of thequestions instead of
half of the exams, maybe because it would be unfair to have thesame question graded
by different people. Here, we could use variations on the approaches above. Each takes
half the stack, grades his own questions, then they swap stacks.

– Or we form apipeline, where each exam goes from one grader to the next to the finished
pile. Some time is needed to start up the pipeline and drain itout, especially if we add
more graders. These models could be applied to the census example, if different census
takers each went to every house to ask different questions.

– Suppose we also add in a “grade totaler and recorder” person.Does that make any of
the approaches better or worse?

• Adding two1, 000, 000 × 1, 000, 000 matrices.

– Each matrix entry in the sum can be computed independently, so we can break this up
any way we like. Could use the master-slave approach, though adomain decomposition
would probably make more sense. Depending on how many processes we have, we
might break it down by individual entries, or maybe by rows orcolumns.

In each of these cases, we have taken what we might normally think of as asequential process,
and taken advantage of the availability ofconcurrent processing to make use of multiple workers
(processing units).

Parallelism adds complexity (as we will see in great detail), so why bother?

• we want to solve the same problem but in a shorter time than possible on one processor –
goal: speedup

• we want to solve larger problems than can currently be solvedat all on a single processor –
goal: scale-up

• some algorithms are more naturally expressed or organized concurrently

• and now: that’s where performance gains come from in modern processors!

2

CS 324 Computer Architecture Fall 2009

Figure used with permission from articleThe Mother of All CPU Charts 2005/2006, Bert Töpelt,
Daniel Schuhmann, Frank V̈olkel, Tom’s Hardware Guide, Nov. 2005,http:

//www.tomshardware.com/2005/11/21/the mother of all cpu charts 2005/

Image from Intel Core Duo Processor product brief.

• The world’s fastest computers are all parallel:http://www.top500.org/

3

CS 324 Computer Architecture Fall 2009

How to Achieve Parallelism

• We need to determine where concurrency is possible, then break up the work accordingly

• This is easiest if a compiler can do this for you – take your sequential program and extract
the concurrency automatically. This is sometimes possible, especially with fixed-size array
computations.

• If the compiler can’t do it, it is possible to give “hints” to the compiler to tell it what is safe
to parallelize.

• But often, the parallelization must be done explicitly: the programmer has to create the
threads or processes, assign work to them, and manage necessary communication.

Before considering our first parallelization paradigm, POSIX threads, we will think about what
code can be parallelized and how we can find opportunities forconcurrency.

Finding Concurrency

We find opportunities for parallelism by looking for parts ofthe sequential program that can be run
in any order.

Before we look at the matrix-matrix multiply, we step back andlook at a simpler example:

1: a = 10;
2: b = a + 5;
3: c = a - 3;
4: b = 7;
5: a = 3;
6: b = c - a;
7: print a, b, c;

Which statements can be run in a different order (or concurrently) but still produce the same an-
swers at the end?

• 1 has to happen before 2 and 3, since they depend ona having a value.
• 2 and 3 can happen in either order.
• 4 has to happen after 2, but it can happen before 3.
• 5 has to happen after 2 and 3, but can happen before 4.
• 6 has to happen after 4 (so 4 doesn’t clobber its value) and after 5 (because it depends on its

value)
• 7 has to happen last.

4

CS 324 Computer Architecture Fall 2009

This can be formalized into a set of rules calledBernstein’s conditions to determine if a pair of
tasks can be executed in parallel:

Two tasksP1 andP2 can execute in parallel if all three of these conditions hold:

1. I1 ∩O2 = ∅

2. I2 ∩O1 = ∅

3. O1 ∩O2 = ∅

whereIi andOi are the input and output sets, respectively, for taski (Bernstein, 1966). Theinput
set is the set of variables read by a task and theoutput set is the set of variables modified by a task.

But on to our running example. We start with the matrix-matrixmultiplication example we saw
earlier in the semester.

See Example:
/home/jteresco/shared/cs324/examples/matmult

Let’s see what can be done concurrently.

/* initialize matrices, just fill with junk */
for (i=0; i<SIZE; i++) {

for (j=0; j<SIZE; j++) {
a[i][j] = i+j;
b[i][j] = i-j;

}
}

/* matrix-matrix multiply */
for (i=0; i<SIZE; i++) { /* for each row */
for (j=0; j<SIZE; j++) { /* for each column */

/* initialize result to 0 */
c[i][j] = 0;

/* perform dot product */
for(k=0; k<SIZE; k++) {

c[i][j] = c[i][j] + a[i][k]*b[k][j];
}

}
}

sum=0;
for (i=0; i<SIZE; i++) {

for (j=0; j<SIZE; j++) {

5

CS 324 Computer Architecture Fall 2009

sum += c[i][j];
}

}

The initialization can all be done in any order – eachi andj combination is independent of each
other, and the assignment ofa[i][j] andb[i][j] can be done in either order.

In the actual matrix-matrix multiply, eachc[i][j] must be initialized to 0 before the sum can
start to be accumulated. Also, iterationk of the inner loop can only be done after rowi of a and
columnj of b have been initialized.

Finally, thesum contribution of eachc[i][j] can be added as soon as thatc[i][j] has been
computed, and aftersum has been initialized to 0.

Thatgranularity seems a bit cumbersome, so we might step back and just say thatwe can initialize
a andb in any order, but that it should be completed before we start computing values inc. Then
we can initialize and compute eachc[i][j] in any order, but we do not start accumulatingsum
until c is completely computed.

But all of these dependencies in this case can be determined bya relatively straightforward com-
putation. Seems like a job for a compiler!

In fact, many of the ideas are similar to those employed by optimizing compilers that reorder
instructions to reduce data and control hazards in a pipelined processor.

In the example, if we have a parallelizing compiler and add the appropriate flags to the compile
command, (such as-xparallel for the Sun compiler), it will determine what can be done
in parallel and generate code to support it. The resulting executable can request a number of
parallel processes. On the Sun systems, this is accomplished by setting the environment variable
PARALLEL. For example:

setenv PARALLEL 4

We do not have a parallelizing compiler handy at the moment, but this program should run in some-
where between1

3
and 1

4
of the time for the single-processor run if we run on a parallel computer

with 4 processors.

One of our goals is to use parallelism to solve a problem more quickly than we could solve it on a
single processor executing a sequential program. We would like to see aspeedup of our program
as we add processors.

Speedup =
Sequential execution time

Parallel execution time

Efficiency =
Sequential execution time

Processors Used × Parallel execution time

6

CS 324 Computer Architecture Fall 2009

An efficient program is one that exhibitslinear speedup – double the number of processors, halve
the running time.

The theoretical upper bound on speedup forp processors isp. Anything greater is calledsuperlin-
ear speedup – can this happen?

We will return to this example and parallelize it by hand.

Not everything can be parallelized by the compiler:

See Example:
/home/jteresco/shared/cs324/examples/matmult serial init

The new initialization code:

for (i=0; i<SIZE; i++) {
for (j=0; j<SIZE; j++) {
if ((i == 0) || (j == 0)) {

a[i][j] = i+j;
b[i][j] = i-j;

}
else {

a[i][j] = a[i-1][j-1] + i + j;
b[i][j] = b[i-1][j-1] + i - j;

}
}

}

can’t be parallelized, so no matter how many processors we throw at it, we can’t speed it up.

The initialization time remains the same regardless of the number of processors used. We still get
good speedups for our matrix-matrix multiplication.

Amdahl’s Law

Any parallel program will have some fractionf that cannot be parallelized, leaving(1 − f) that
may be parallelized. This means that at best, we can expect running time onp processors to be
f + 1−f

p
.

From this, we can stateAmdahl’s Law in terms of maximum achievable speedup:

ψ ≤
1

f + 1−f

p

This is an important equation to keep in mind when determining whether to make the effort to
parallelize a program, and how many processors are likely tobe worthwhile to use to execute it.

7

CS 324 Computer Architecture Fall 2009

Approaches to Parallelism
Automatic parallelism is great, when it’s possible. We got it for free (at least once we bought the
compiler)! It does have limitations, though:

• some potential parallelization opportunities cannot be detected automatically – can add di-
rectives to help (OpenMP – a topic we will not discuss today)

• bigger complication – this executable cannot run on distributed-memory systems

Parallel programs can be categorized by how the cooperatingprocesses communicate with each
other:

• Shared Memory – some variables are accessible from multiple processes. Reading and
writing these values allow the processes to communicate.

• Message Passing– communication requires explicit messages to be sent from one process
to the other when they need to communicate.

These are functionally equivalent given appropriate operating system support. For example, one
can write message-passing software using shared memory constructs, and one can simulate a
shared memory by replacing accesses to non-local memory with a series of messages that access
or modify the remote memory.

The automatic parallelization we have seen to this point is ashared memory parallelization, though
we don’t have to think about how it’s done. The main implication is that we have to run the
parallelized executable on a computer with multiple processors.

Our first tool for explicit parallelization will be shared memory parallelism using threads.

A Brief Intro to POSIX threads
Multithreading usually allows for the use of shared memory.Many operating systems provide
support for threads, and a standard interface has been developed:POSIX Threads or pthreads.

A good online tutorial is available athttps://computing.llnl.gov/computing/tutorials/
pthreads/.

You read through this and remember that it’s there for reference.

A Google search for “pthread tutorial” yields many others.

Pthreads are standard on most modern Unix-like operating systems.

The basic idea is that we can create and destroy threads of execution in a program, on the fly, during
its execution. These threads can then be executed in parallel by the operating system scheduler.
If we have multiple processors, we should be able to achieve aspeedup over the single-threaded
equivalent.

We start with a look at a pthreads “Hello, world” program:

8

CS 324 Computer Architecture Fall 2009

See Example:
/home/jteresco/shared/cs324/examples/pthreadhello

The most basic functionality involves the creation and destruction of threads:

• pthread create(3THR) – This creates a new thread. It takes 4 arguments. The first
is a pointer to a variable of typepthread t. Upon return, this contains a thread iden-
tifier that may be used later in a call topthread join(). The second is a pointer to a
pthread attr t structure that specifies thread creation attributes. In thepthreadhel-
lo program, we pass inNULL, which will request the system default attributes. The third
argument is a pointer to a function that will be called when the thread is started. This function
must take a single parameter of typevoid * and returnvoid *. The fourth parameter is
the pointer that will be passed as the argument to the thread function.

• pthread exit(3THR) – This causes the calling thread to exit. This is called implicitly
if the thread function called during the thread creation returns. Its argument is a return status
value, which can be retrieved bypthread join().

• pthread join(3THR) – This causes the calling thread to block (wait) until the thread
with the identifier passed as the first argument topthread join() has exited. The second
argument is a pointer to a location where the return status passed topthread exit() can
be stored. In thepthreadhello program, we pass inNULL, and hence ignore the value.

Prototypes for pthread functions are inpthread.h and programs need to link withlibp-
thread.a (use-lpthread at link time). When using the Sun compiler, the-mt flag should
also be specified to indicate multithreaded code. For FreeBSD, the-pthread flag is used.

A bit of extra initialization is necessary to make sure the system will allow your threads to make
use of all available processors. It may, by default, allow only one thread in your program to be
executing at any given time. If your program will create up ton concurrent threads, you should
make the call:

pthread_setconcurrency(n+1);

somewhere before your first thread creation. The “+1” is needed to account for the original thread
plus then you plan to create.

You may also want to specify actual attributes as the second argument topthread create().
To do this, declare a variable for the attributes:

pthread_attr_t attr;

and initialize it with:

pthread_attr_init(&attr);

9

CS 324 Computer Architecture Fall 2009

and set parameters on the attributes with calls such as:

pthread_attr_setscope(&attr, PTHREAD_SCOPE_PROCESS);

I recommend the above setting for threads in Solaris.

Then, you can pass in&attr as the second parameter topthread create().

Any global variables in your program are accessible to all threads. Local variables are directly
accessible only to the thread in which they were created, though the memory can be shared by
passing a pointer as part of the last argument topthread create().

Brief Intro to Critical Sections
As you may have been shown in other contexts, concurrent access to shared variables can be
dangerous.

Consider this example:

See Example:
/home/jteresco/shared/cs324/examples/pthread danger

Run it with one thread, and we get 100000. What if we run it with 2 threads? On a multiprocessor,
it is going to give the wrong answer! Why?

The answer is that we have concurrent access to the shared variablecounter. Suppose that two
threads are each about to executecounter++, what can go wrong?

counter++ really requires three machine instructions: (i) load a register with the value of
counter’s memory location, (ii) increment the register, and (iii) store the register value back
in counter’s memory location. Even on a single processor, the operating system could switch
the process out in the middle of this. With multiple processors, the statements really could be
happening concurrently.

Consider two threads running the statements that modifycounter:

Thread A Thread B
A1 R0 = counter; B1 R1 = counter;
A2 R0 = R0 + 1; B2 R1 = R1 + 1;
A3 counter = R0; B3 counter = R1;

Consider one possible ordering:A1 A2 B1 A3 B2 B3 , wherecounter=17 before starting. Uh
oh.

What we have here is arace condition that can lead tointerference of the actions of one thread with
another. We need to make sure that when one process starts modifying counter, that it finishes
before the other can try to modify it. This requiressynchronization of the processes.

When we run it on a single-processor system, the problem is unlikely to show itself - we almost
certainly get the correct sum when we run it. However, there is no guarantee that this would be

10

CS 324 Computer Architecture Fall 2009

the case. The operating system could switch threads in the middle of the load-increment-store
sequence, resulting in a race condition and an incorrect result. Try the program on a uniprocessor
with dozens of threads and you might start to run into problems.

We need to make those statements that incrementcounter atomic. We say that the modification
of counter is acritical section.

There are many solutions to the critical section problem andthis is a major topic in an operating
systems course. But for our purposes, at least for now, it is sufficient to recognize the problem, and
use available tools to deal with it.

The pthread library provides a construct called amutex (short for themutual exclusion that we
want to enforce for the access of thecounter variable) allows us to ensure that only one thread
at a time is executing a particular block of code. We can use itto fix our “danger” program:

See Example:
/home/jteresco/shared/cs324/examples/pthread nodanger

We declare a mutex like any other shared variable. It is of typepthread mutex t. Four func-
tions are used:

• pthread mutex init(3THR) – initialize the mutex and set it to the unlocked state.
• pthread mutex lock(3THR) – request the lock on the mutex. If the mutex is unlocked,

the calling thread acquires the lock. Otherwise, the threadis blocked until the thread that
previously locked the mutex unlocks it.

• pthread mutex lock(3THR) – unlock the mutex.
• pthread mutex destroy(3THR) – destroy the mutex (clean up memory).

A few things to consider about this:

Why isn’t the access to the mutex a problem? Isn’t it just a shared variable itself? – Yes, it’s
a shared variable, but access to it is only through the pthread API. Techniques that are discussed
in detail in an operating systems course are used to ensure that access to the mutex itself does not
cause a race condition.

Doesn’t that lock/unlock have a significant cost?– Let’s see. We can time the programs we’ve
been looking at:

See Example:
/home/jteresco/shared/cs324/examples/pthread danger timed

See Example:
/home/jteresco/shared/cs324/examples/pthread nodanger timed

Try these out. What are the running times of each version? Perhaps the cost is too much if we’re
going to lock and unlock that much. Maybe we shouldn’t do so much locking and unlocking. In
this case, we’re pretty much just going to lock again as soon as we can jump back around through
thefor loop again.

This is a good example of the parallel overhead we mentioned earlier.

11

CS 324 Computer Architecture Fall 2009

Here’s an alternative:

See Example:
/home/jteresco/shared/cs324/examples/pthread nodanger coarse

In this case, the coarse-grained locking (one thread gets and holds the lock for a long time) should
improve the performance significantly. How fast does it run now? But at what cost? We’ve
completely serialized the computation! Only one thread canactually be doing something at a time,
so we can’t take advantage of multiple processors. If the “computation” was something more
significant, we would need to be more careful about the granularity of the locking.

Data Parallel Computation
Tasks such as many scientific computations can be solved using adata parallel programming style.
A data parallel program is one in which each process executesthe same actions concurrently, but
on different parts of shared data.

Contrast this with atask parallel (or a pipelined) approach, where different processes each perform
a different step of the computation on the same data.

An important consideration in a data parallel computation is load balancing – making sure that
each process/thread has about the same amount of work to do. Otherwise, some would finish
before others, possibly leaving available processors idlewhile other processors continue to work.
Load balancing will be an important topic throughout the course. Parallel efficiency and scalability
of a data parallel computation will be highly dependent on a good load balance.

This is our first real example ofthread/process synchronization, which is the main reason paral-
lelism is so hard. These examples were contrived to “encourage” the problem to show up and to
emphasize the overhead of the solution, but in a real problem, the interference may be very subtle
and show itself only very rarely.

Bag of Tasks Paradigm

One specific way of deciding which processes/threads do the operations on which parts of the data
is thebag of tasks. In this case, each thread/process is aworker that finds atask (unit of work) to
do (from the “bag”), does it, then goes back for more:

while (true) {
// get a task from the bag
if (no tasks remain) break;
//execute the task

}

A nice feature of this approach is that load balancing comes for free, as long as we have more tasks
than workers. Even if some tasks cost more than others, or some workers work more slowly than
others, any available work can be passed out to the first available worker until no tasks remain.

12

CS 324 Computer Architecture Fall 2009

Back to our matrix multiplication example, we can break up thecomputation into a bag of tasks.
We’ll choose a fine-grained parallelization, where the computation of each entry is one of our tasks.

See Example:
/home/jteresco/shared/cs324/examples/matmult bagoftasks

Run this on a four-processor node. You should see that it is still pretty slow. Perhaps the granularity
of the computation is too small – too much time picking out a task, not enough time doing it. We
created 562,500 tasks. This means we have to acquire the lock562,500 times. How long does this
take to run?

We can easily break up our computation by row or column of the result matrix, as well. Here is a
row-wise decomposition:

See Example:
/home/jteresco/shared/cs324/examples/matmult smallbagoftasks

You should find that this is much more efficient! We coarsened the parallelism, but kept it fine
enough that all of our threads could keep busy. We still had 750 tasks in the bag. How long does
this take to run?

Explicit Domain Decomposition

If we could improve things significantly by coarsening the parallelism in the bag of tasks, perhaps
we can do even better by dividing up the entire computation ahead of time to avoid any selection
from the bag of tasks whatsoever.

With the matrix-matrix multiply example, this is easy enough – we can just giveSIZE/numworkers
rows to each thread, they all go off and compute, and they’ll all finish in about the same amount of
time:

See Example:
/home/jteresco/shared/cs324/examples/matmult decomp

Some things to notice about this example:

• During the setup, we compute the range of rows that each thread will be responsible for. We
can’t simply give every thread the same number of rows, in case the number of threads does
not divide the matrix size evenly. The computation as shown also guarantees no more than a
one-row imbalance.

• We need to tell each thread its range of rows to compute. But thread functions are restricted
to a single parameter, of typevoid *. We can use this pointer to pass in anything we want,
by putting all of the parameters into a structure.

Notice that each thread needs its own copy of this structure –we can’t just create a single
copy, send it topthread create(), change the values, and use it again. Why?

Explicit domain decomposition works out well in this example, since there’s an easy way to break
it up (by rows), and each row’s computation is equal in cost.

13

CS 324 Computer Architecture Fall 2009

Is there any advantage to breaking it down by columns instead? How about, in the case of 4 threads,
into quadrants?

In more complicated examples, load balancing with a domain decomposition may be more difficult.

What about distributed memory?
So far we have seen two ways to create a parallel program:

1. Let the compiler do whatever it can completely automatically

2. Create threads explicitly using pthreads

A third, that we are not discussing here, is to give hints through compiler directives using a library
and compiler that supports OpenMP.

These all suffer from one significant limitation – the cooperating threads must be able to commu-
nicate through shared variables.

How can we design and run parallel programs to work when thereis no shared memory available?

Message Passing
We will now consider the message passing paradigm.

• Characteristics:

– Locality - each processor accessesonly its local memory

– Explicit parallelism - messages are sent and received explicitly - programmer controls
all parallelism. The compiler doesn’t do it.

– Cooperation- every send must have a matching receive in order for the communication
to take place.Beware of deadlock! One sided communication is possible, but doesn’t
really fit the pure message-passing model.

• Advantages:

– Hardware - many current clusters of workstations and supercomputersfit well into
the message passing model, and shared memory systems can runmessage passing pro-
grams as well.

– Functionality - full access to parallelism. We don’t have to rely on a compiler. The
programmer can decide when parallelism makes sense. But thisis also a disadvantage
- the full burden is on the programmer! Advice: If the compiler can do it for you, let it!

14

CS 324 Computer Architecture Fall 2009

– Performance- data locality is important - especially in a multi-level memory hierarchy
which includes off-processor data. There is a chance for superlinear speedup with
added cache as we talked about earlier in the course. Communication is often MUCH
more expensive than computation.

Message Passing Libraries

• Message passing is supported through a set of library routines. This allows programmers to
avoid dealing with the hardware directly. Programmers wantto concentrate on the problem
they’re trying to solve, not worrying about writing to special memory buffers or making
TCP/IP calls or even creating sockets.

• Examples: P4, PVM, MPL, MPI, MPI-2, etc. MPI and PVM are the most common.

• Core Functionality:

– Process Management - start and stop processes, query number of procs or PID.

– Point-to-Point Communications - send/receive between processes

– Collective Communication - broadcast, scatter, gather, synchronization

• Terminology:

– Buffering - copy into a buffer somewhere (in library, hardware)

– Blocking communication - wait for some “event” to complete a communication routine

– Nonblocking communication - “post” a message and return immediately

– Synchronous communication - special case of blocking - send does not return until
corresponding receive completes

– Asynchronous communication - pretty much nonblocking

Point-to-Point Communication

All message passing is based on the simplesend andreceive operations

P0: send(addr,len,dest,tag)

P1: receive(addr,max_len,src,tag,rec_len)

These are basic components in any message-passing implementation. There may be others intro-
duced by a specific library.

15

CS 324 Computer Architecture Fall 2009

• addr is the address of the send/receive buffer

• len is the length of the sent message

• max len is the size of the receive buffer (to avoid overflow)

• rec len is the length of the message actually received

• dest identifies destination of a message being sent

• src identifies desired sender of a message being received (or where it actually came from if
“any source” is specified)

• tag a user-defined identifier restricting receipt

Point-to-Point Communication - Blocking

Blocking communication has simple semantics:

• send completes when send buffers are ready for reuse, after message received or at least
copied into system buffers

• receive completes when the receive buffer’s value is ready to use

But beware of deadlockwhen using blocking routines!!

Proc 0 Proc 1

bsend(to 1) bsend(to 0)
brecv(from 1) brecv(from 0)

If both processors’ send buffers cannot be copied into system buffers, or if the calls are strictly syn-
chronous, the calls will block until the corresponding receive call is made... Neither can proceed...
deadlock...

Possible solutions - reorder to guarantee matching send/receive pairs, or usenonblocking routines...

Point-to-Point Communication - Nonblocking

• send or receive calls return immediately - but how do we know when it’s done? When
can we use the value?

• can overlap computation and communication

• must call await routine to ensure communication has completed before destroying send
buffer or using receive buffer

16

CS 324 Computer Architecture Fall 2009

Example:

Proc 0 Proc 1

nbsend(to 1) nbsend(to 0)
nbrecv(from 1) nbrecv(from 0)
compute...... compute......
waitall waitall
use result use result

During the “compute......” phase, it’s possible that the communication can be completed “in the
background” while the computation proceeds, so when the “waitall” lines are reached, the program
can just continue.

Deadlock is less likely but we still must be careful – the burden of avoiding deadlock is on the
programmer in a message passing model of parallel computation.

Collective Communication

Some common operations don’t fit well into a point-to-point communication scheme. Here, we
may usecollective communication routines.

• collective communication occurs among a group of processors

• the group can be all or a subset of the processors in a computation

• collective routines are blocking

• types of collective operations

– synchronization/barrier - wait until all processors have reached a given point

– data movement - broadcast (i.e. error condition, distribute read-in values), scatter/gather
(exchange boundary on a finite element problem, for example), all-to-all (extreme case
of scatter/gather)

– reductions - collect data from all participating processors and operate on it (i.e. add,
multiply, min, max)

These kinds of operations can be achieved through a series ofpoint-to-point communication steps,
but operators are often provided.

Using collective communication operators provided is generally better than trying to do it yourself.
In addition to providing convenience, the message passing library can often perform the operations
more efficiently by taking advantage of low-level functionality.

17

CS 324 Computer Architecture Fall 2009

MPI
The Message Passing Interface (MPI) was created by a standards committee in the early 1990’s.

• motivated by the lack of a good standard

– everyone had their own library

– PVM demonstrated that a portable library was feasible

– portablity and efficiency were conflicting goals

• The MPI-1 standard was released in 1994, and many implementations (free and proprietary)
have since become available

• MPI specifies C and Fortran interfaces (125 functions in the standard), more recently C++
as well

• parallelism is explicit - the programmer must identify parallelism and implement a parallel
algorithm using MPI constructs

• MPI-2 is an extention to the standard developed later in the 1990’s and there are now some
implementations

MPI Terminology

• Rank – a unique identifier for a process

– values are 0...n− 1 whenn processes are used

– specify source and destination of messages

– used to control conditional execution

• Group – a set of processes, associated with acommunicator

– processes in a group can take part in a collective communication, for example

– we often use the predefined communicator specifying the group of all processors in a
communication:MPI COMM WORLD

– the communicator ensures safe communication within a group- avoid potential con-
flicts with other messages

• Application Buffer - application space containing data to send or received data

• System Buffer - system space used to hold pending messages

18

CS 324 Computer Architecture Fall 2009

Major MPI Functions

MPI Simple Program - basic MPI functions

We begin with a simple “Hello, World” program.

See Example:
/home/jteresco/shared/cs324/examples/mpihello

MPI calls and constructs in the “Hello, World” program:

• #include <mpi.h> - the standard MPI header file

• MPI Init(int *argc, char *argv[]) - MPI Initialization

• MPI COMM WORLD - the global communicator. Use forMPI Comm args in most situations

• MPI Abort(MPI Comm comm, int rc) - MPI Abort function 3

• MPI Comm size(MPI Comm comm, int *numprocs) - returns the number of pro-
cesses in a given communicator innumprocs

• MPI Comm rank(MPI Comm comm, int *pid) - returns the rank of the current pro-
cess in the given communicator

• MPI Get processor name(char *name, int *rc) - returns the name of the node
on which the current process is running

• MPI Finalize() - clean up MPI

The model of parallelism is very different from what we have seen. All of our processes exist
for the life of the program. We are not allowed to do anything beforeMPI Init() or after
MPI Finalize(). We need to think in terms of a number of copies of thesame program all
starting up atMPI Init().

To run, compile withmpicc, run withmpirun according to the instructions on the course web
page.

MPI Point-to-Point message functions

There are just a few that we’ll use frequently:

• MPI Send/MPI Recv - standard blocking calls (may have system buffer)

• MPI Isend/MPI Irecv - standard nonblocking calls

19

CS 324 Computer Architecture Fall 2009

• wait calls for nonblocking communications:MPI Wait, MPI Waitall, MPI Wait-
some, MPI Waitany

And there are many variations that we won’t likely use much:

• MPI Ssend/MPI Issend - synchronous blocking/nonblocking send

• MPI Bsend/MPI Ibsend - buffered blocking/nonblocking send - programmer allocates
message buffer withMPI Buffer attach

• MPI Rsend/MPI Irsend - ready mode send - matching receivemust have been posted
previously

• MPI Sendrecv - combine send/recv into one call before blocking

• also:MPI Probe andMPI Test calls

Blocking Point-to-point Communication

A simple MPI program that sends a single message using blocking communication:

See Example:
/home/jteresco/shared/cs324/examples/mpimsg

• All MPI calls return a status value, and it’s a good idea to check it as is done in this example
for theMPI Init call.

– Most class examples will not be thorough in this to keep things looking simpler.

– For our purposes, any MPI error will cause the program to terminate with an error
message, so it usually is not that important to us.

– When developing large-scale software, we often wish to return error codes rather than
crash the whole program, so error checking becomes more important there.

– The error checking includes a messy little chunk of code to print out appropriate mes-
sages, so it’s probably worth putting this into your own error reporting function if you
want to use it.

• MPI Status status - structure which contains additional info following a receive. We
often ignore it, but we will see some instances where it comesin handy.

• MPI Send(void *buf, int count, MPI Datatype type, int dest, int
tag, MPI Comm comm) - blocking send - does not return until the corresponding receive
is completed. sendscount copies of data of typetype located inbuf to the processor
with pid dest.

20

CS 324 Computer Architecture Fall 2009

• MPI Recv(void *buf, int count, MPI Datatype type, int src, int
tag, MPI Comm comm, MPI Status status) - blocking receive - does not return
until the message has been received.src may be specific PID orMPI ANY SOURCE which
matches, well, a message from any source.

• MPI Datatype examples:MPI CHAR, MPI INT, MPI LONG, MPI FLOAT, MPI -
DOUBLE, MPI BYTE, MPI PACKED

Non-blocking Point-to-point Communication

A slightly more interesting MPI program that sends one message from each process with non-
blocking messages:

See Example:
/home/jteresco/shared/cs324/examples/mpiring

• MPI Request request - structure which contains info needed by nonblocking callsto
check on their status or to wait for their completion.

• MPI Isend(void *buf, int count, MPI Datatype type, int dest, int
tag, MPI Comm comm, MPI Request *req) - nonblocking send - returns immedi-
ately.buf must not be modified until a wait function is called using thisrequest.

• MPI Irecv(void *buf, int count, MPI Datatype type, int source,
int tag, MPI Comm comm, MPI Request *req) - nonblocking receive - returns
immediately.buf must not be used until a wait function is called using this request.

• MPI Wait(MPI Request *req, MPI Status *status) - wait for completion of
message which hadreq as its request argument. Additional info such as source of a message
received asMPI ANY SOURCE is contained instatus.

TheMPI ANY SOURCE option is used in this modified version of the example:

See Example:
/home/jteresco/shared/cs324/examples/mpiring anysource

Collective Communication

We often need to perform operations at a higher level than simple sends and receives.

See Example:
/home/jteresco/shared/cs324/examples/mpicoll

• MPI Barrier(MPI Comm comm) - synchronize procs

• MPI Bcast(void *buf,int count,MPI Datatype type,int root,MPI Comm
comm) - broadcast - sendscount copies of data of typetype located inbuf on procroot
to buf on all others.

21

CS 324 Computer Architecture Fall 2009

• MPI Reduce(void *sendbuf,void *recvbuf,int count, MPI Datatype
type,MPI Op op,int root,MPI Comm comm) - combines data insendbuf on
each proc using operationop and stores the result inrecvbuf on procroot

• MPI Allreduce() - same as reduce except result is stored inrecvbuf on all procs

• MPI Op values -MPI MAX, MPI MIN, MPI SUM, MPI PROD, MPI LAND, MPI BAND,
MPI LOR, MPI BOR, MPI LXOR, MPI BXOR, MPI MAXLOC, MPI MINLOC plus user-
defined

• MPI Scan(void *sendbuf, void *recvbuf, int count, MPI Datatype
type, MPI Op op, MPI Comm comm) - parallel prefix scan operations

Scatter/Gather – Higher-level Collective Communication

See Example:
/home/jteresco/shared/cs324/examples/mpiscatgath

• MPI Scatter(void *sendbuf, int sendcount, MPI Datatype sendtype,
void *recvbuf, int recvcount, MPI Datatype recvtype, int root,
MPI Comm comm) - root sendssendcount items fromsendbuf to each processor.
Each processor receivesrecvcount items intorecvbuf

• MPI Gather(void *sendbuf, int sendcount, MPI Datatype sendtype,
void *recvbuf, int recvcount, MPI Datatype recvtype, int root,
MPI Comm comm) - each proc sendssendcount items fromsendbuf to root. root
receivesrecvcount items intorecvbuf from each proc

• MPI Scatterv/MPI Gatherv work with variable-sized chunks of data

• MPI Allgather/MPI Alltoall variations of scatter/gather

To understand what is going on with the various broadcast andscatter/gather functions, consider
this figure, taken from the MPI Standard, p.91

22

CS 324 Computer Architecture Fall 2009

Sample MPI Applications

Conway’s Game of Life

The Game of Life was invented by John Conway in 1970. The game isplayed on a field of cells,
each of which has eight neighbors (adjacent cells). A cell iseither occupied (by an organism) or
not. The rules for deriving a generation from the previous one are:

• Death: If an occupied cell has 0, 1, 4, 5, 6, 7, or 8 occupied neighbors, it dies (of either
boredom or overcrowding, as the case may be)

• Survival: If an occupied cell has 2 or 3 occupied neighbors, it survives to the next generation

• Birth: If an unoccupied cell has 3 occupied neighbors, it becomes occupied.

The game is very interesting in that complex patterns and cycles arise. Do a google search to find
plenty of Java applets you can try out.

23

CS 324 Computer Architecture Fall 2009

I like the one here:

http://www.math.com/students/wonders/life/life.html

My implementation is not graphical, so it’s a lot less fun. Itplays the game, but only computes
statistics.

Serial version:See Example:
/home/jteresco/shared/cs324/examples/life

MPI version:See Example:
/home/jteresco/shared/cs324/examples/mpilife

• Since our memory is not shared, we only allocate enough memory on each process to hold
the rows that will be computed by that process, plus a “ghost”row on each side that will
allow simple computation of our rows.

• When we need to get a global count of some statistic, such as thecount of live cells at the
start, we use a reduction.

• The communication is done with two pairs of sends and receives. Here, we use nonblocking
calls, then wait for their completion with the waitall call.

Matrix-Matrix Multiplication

Matrix-matrix multiplication using message passing is notas straightforward as matrix-matrix
multiplication using shared memory and threads. Why?

• Since our memory is not shared, which processes have copies of the matrices?

• Where does the data start out? Where do we want the answer to be inthe end?

• How much data do we replicate?

• What are appropriate MPI calls to make all this happen?

The MPI version of Conway’s Game of Life used a distributed data structure. Each process main-
tains its own subset of the computational domain, in this case just a number of rows of the grid.
Other processes do not know about the data on a given process.Only that data that is needed to
compute the next generation, a one-cell overlap, is exchanged between iterations.

Think about that – no individual process has all of the information about the computation. It only
works because all processes are cooperating.

The “slice by slice” method of distributing the grid was chosen only for its simplicity of implemen-
tation, both in the determination of what processes are given what rows, and the straightforward
communication patterns that can be used to exchange boundary data. We could partition in more
complicated patterns, but there would be extra work involved.

24

CS 324 Computer Architecture Fall 2009

The possiblities for the matrix-matrix multiply are numerous. Now the absolute easiest way to do
it would be to distribute the matrixA by rows, haveB replicated everywhere, and then haveC by
rows. If we distributed our matrices this way in the first place, everything is simple:

See Example:
/home/jteresco/shared/cs324/examples/matmult mpi toosimple

This program has very little MPI communication – this is by design, as we distributed our matrices
so that each process would have exactly what it needs.

Unfortunately, this is not likely to be especially useful. More likely, we will want all three matrices
distributed the same way.

To make the situation more realistic, but still straightforward, let’s assume that our initial matrices
A andB are distributed by rows, in the same fashion as the Life simulator. Further, the result matrix
C is also to be distributed by rows.

The process that owns each row will do the computation for that row. What information does each
process have locally? What information will it need to request from other processes?

Matrix multiplication is a pretty “dense” operation, and weto send all the columns ofB to all
processes.

See Example:
/home/jteresco/shared/cs324/examples/matmult mpi simple

Note that we only initialize rows ofB on one process, but since it’s all needed on every process,
we need to broadcast those rows.

Can we do better? Can we get away without storing all ofB on each process? We know we need
to send it, but we we do all the computation that needs each rowbefore continuing on to the next?

See Example:
/home/jteresco/shared/cs324/examples/matmult mpi better

Yes, all we had to do was rearrange the loops that do the actualcomputation of the entries ofC.
We can broadcast each row, use it for everything it needs to beused for, then we move on. We save
memory!

Even though we do the exact same amount of communication, ourmemory usage per process goes
fromO(n2) toO(n2

p
).

25

