—_— Mount Holyoke College
MOUNT HOLYOKE COLLEGE Fa” 2009

Computer Science 324
MI IC Computer Architecture

Topic Notes: Programming Parallel Computers

Why Parallel Computing?

Parallel computing sounds simple enough — when one comgntémpowerful enough to solve
your problem, use more than one.

Before we start to think about how to use parallelism on a cderplet’s think about a parallel
approach to solving a “real-world” problem.

e Taking a census of South Hadley.
One person doing this would visit each house, count the peapd ask whatever questions
are supposed to be asked. This person would keep runningscointhe end, this person
has gathered everything.
If there are two people, they can work concurrently. Eachis/gome houses, and they need
to “report in” along the way or at the end to combine their mfation. But how to split up
the work?

— Each person could do what the individual was originally doibut would check to
make sure each house along the way had not yet been counted.

— Each person could start at the town hall, get an address #satdt yet been visited,
go visit it, then go back to the town hall to report the resoll get another address to
visit. Someone at town hall keeps track of the cumulatival$otThis is nice because
neither person will be left without work to do until the whdleng is done. This is the
master-slave method of breaking up the work.

— The town could be split up beforehand. Each could get a rahdsetected collection
of addresses to visit. Maybe one person takes all housesew@h street numbers
and the other all houses with odd street numbers. Or perhaperson would take
everything west of Route 116 and the other everything east afeRbl6. The choice
of how to divide up the town may have a big effect on the totalt.cdhere could be
excessive travel if one person walks right past a house #émibt yet been visited.
Also, one person could finish completely while the othet bis a lot of work to do.
This is adomain decomposition approach.

e Grading a stack of exams. Suppose each has several quegtgaia, assume two graders
to start.

— Each person could take half of the stack. Simple enough. BstWblave the potential
of one person finishing before the other.

CS 324 Computer Architecture Fall 2009

— Each person could take a paper from the “ungraded” stacllegtathen put it into the
“graded” stack.

— Perhaps it makes more sense to have each person grade Ihalfjoédtions instead of
half of the exams, maybe because it would be unfair to haveahee question graded
by different people. Here, we could use variations on the@guhes above. Each takes
half the stack, grades his own questions, then they swaksstac

— Orwe form apipeline, where each exam goes from one grader to the next to the fthishe
pile. Some time is needed to start up the pipeline and drautjtespecially if we add
more graders. These models could be applied to the censompkxaf different census
takers each went to every house to ask different questions.

— Suppose we also add in a “grade totaler and recorder” pe3oes that make any of
the approaches better or worse?

e Adding two1, 000,000 x 1,000,000 matrices.

— Each matrix entry in the sum can be computed independentlyescan break this up
any way we like. Could use the master-slave approach, thodghain decomposition
would probably make more sense. Depending on how many [mesege have, we
might break it down by individual entries, or maybe by rowgolumns.

In each of these cases, we have taken what we might normatly ¢ii as asequential process,

and taken advantage of the availabilityamhcurrent processing to make use of multiple workers
(processing units).

Parallelism adds complexity (as we will see in great detad)why bother?

e We want to solve the same problem but in a shorter time thasilgleson one processor —
goal: speedup

e We want to solve larger problems than can currently be sahwedl on a single processor —
goal: scale-up

e some algorithms are more naturally expressed or organeclicrently

e and now: that's where performance gains come from in modercgssors!

CS 324 Computer Architecture Fall 2009

:&% CPU-Frequency 1993 - 2005

Vﬁﬂlrde AMD and Itel
4000
3500
3000
2500
2000

1500

2
7
:
=
g

1000
S00

A0

—|rtel

Figure used with permission from articlée Mother of All CPU Charts 2005/2006, Bert Topelt,
Daniel Schuhmann, Frankdlkel, Tom’s Hardware Guide, Nov. 2008t t p:
/I www. t onmshar dwar e. com 2005/ 11/ 21/t he_not her _of _al | _.cpu_chart s_2005/

Intel® Smart Cache

Image from Intel Core Duo Processor product brief.

e The world’s fastest computers are all paralte:t p: / / www. t op500. or g/

CS 324 Computer Architecture Fall 2009

How to Achieve Parallelism

e We need to determine where concurrency is possible, thexk e the work accordingly

e This is easiest if a compiler can do this for you — take youusetjal program and extract
the concurrency automatically. This is sometimes posséspecially with fixed-size array
computations.

¢ If the compiler can’'t do it, it is possible to give “hints” tbé compiler to tell it what is safe
to parallelize.

e But often, the parallelization must be done explicitly: thegrammer has to create the
threads or processes, assign work to them, and manage agcessimunication.

Before considering our first parallelization paradigm, PO8ireads, we will think about what
code can be parallelized and how we can find opportunitiesdocurrency.

Finding Concurrency

We find opportunities for parallelism by looking for partstbé sequential program that can be run
in any order.

Before we look at the matrix-matrix multiply, we step back &wak at a simpler example:

TCY oTOoT®

Which statements can be run in a different order (or conctiyielut still produce the same an-
swers at the end?

1 has to happen before 2 and 3, since they deperadl@ving a value.

2 and 3 can happen in either order.

4 has to happen after 2, but it can happen before 3.

5 has to happen after 2 and 3, but can happen before 4.

6 has to happen after 4 (so 4 doesn’t clobber its value) ard aftbecause it depends on its
value)

7 has to happen last.

CS 324 Computer Architecture Fall 2009

This can be formalized into a set of rules callBenstein’s conditions to determine if a pair of
tasks can be executed in parallel:

Two tasksP; and P, can execute in parallel if all three of these conditions hold

1[1ﬂ02:®
2]2ﬂ01:@
3. OlmOQZQ

wherel; andO; are the input and output sets, respectively, for tadernstein, 1966). Thanput
set is the set of variables read by a task anddbigput set is the set of variables modified by a task.

But on to our running example. We start with the matrix-mainultiplication example we saw
earlier in the semester.

See Example:
/ home/ j t eresco/ shar ed/ cs324/ exanpl es/ mat nmul t

Let’'s see what can be done concurrently.

/= initialize matrices, just fill with junk */
for (i=0; i<SIZE;, i++) {
for (j=0; j<SIZE, j++) {
a[i][j] = i+j;
bli][j] =1i-j;
}
}

[matrix-matrix multiply */
for (i=0; i<SIZE;, i++) { [* for each row */
for (j=0; jJ<SIZE; j++) { /* for each colum =/
[+ initialize result to 0 */
clillil =0;

/= perform dot product =*/
for(k=0; k<SIZE, k++) {
\ c[i][jl =clilli]l + a[i]l[kl*b[K][j];
}
}

sun¥o0;
for (i=0; i<SIZE;, i++) {
for (j=0; j<SIZE, j++) {

CS 324 Computer Architecture Fall 2009

sum+= cl[i][]];
}
}

The initialization can all be done in any order — eacaAndj combination is independent of each
other, and the assignmentaffi] [j] andb[i][]j] can be done in either order.

In the actual matrix-matrix multiply, eaat{ i] [j] must be initialized to O before the sum can
start to be accumulated. Also, iteratikrof the inner loop can only be done after rowof a and
columnj of b have been initialized.

Finally, thesumcontribution of eaclke[i][j] can be added as soon astbpi] [j] has been
computed, and afterumhas been initialized to 0.

Thatgranularity seems a bit cumbersome, so we might step back and just saydltain initialize
a andb in any order, but that it should be completed before we startputing values irc. Then
we can initialize and compute eachi] [j] in any order, but we do not start accumulatsigm
until ¢ is completely computed.

But all of these dependencies in this case can be determinaddgtively straightforward com-
putation. Seems like a job for a compiler!

In fact, many of the ideas are similar to those employed bynoping compilers that reorder
instructions to reduce data and control hazards in a pip@lprocessor.

In the example, if we have a parallelizing compiler and addahppropriate flags to the compile

command, (such asxparal | el for the Sun compiler), it will determine what can be done
in parallel and generate code to support it. The resultirecetable can request a number of
parallel processes. On the Sun systems, this is accomglisheetting the environment variable

PARALLEL. For example:

setenv PARALLEL 4

We do not have a parallelizing compiler handy at the momentHhis program should run in some-
where betwee% andi of the time for the single-processor run if we run on a pakralenputer
with 4 processors.

One of our goals is to use parallelism to solve a problem moiekty than we could solve it on a
single processor executing a sequential program. We wikddd see apeedup of our program
as we add processors.

Sequential execution time

Speedup =
P P Parallel execution time

Sequential execution time

Efficiency =
Y Processors Used x Parallel execution time

CS 324 Computer Architecture Fall 2009

An efficient program is one that exhibiisiear speedup — double the number of processors, halve
the running time.

The theoretical upper bound on speedupfprocessors ig. Anything greater is calleduperlin-
ear speedup — can this happen?

We will return to this example and parallelize it by hand.
Not everything can be parallelized by the compiler:

See Example:
/ home/ j t eresco/ shared/ cs324/ exanpl es/ matmul t serial .init

The new initialization code:

for (i=0; i<SIZE i++) {
for (j=0; j<SIZE j++) {
if ((i ==0) || (j ==0)) {

ali][j] = i+j;

bli][j] =1i-];

}

el se {

afi][j] =ali-1][j-1] + 1 +J;
} b[i][j] =Db[i-1][j-1] +i - j;

can’t be parallelized, so no matter how many processors keetat it, we can’t speed it up.

The initialization time remains the same regardless of tiralrer of processors used. We still get
good speedups for our matrix-matrix multiplication.

Amdahl’s Law

Any parallel program will have some fractighthat cannot be parallelized, leaviig — f) that
may be parallelized. This means that at best, we can expeingitime onp processors to be
f+5L

From this, we can statémdahl’s Law in terms of maximum achievable speedup:

1
VS iy
[+

This is an important equation to keep in mind when deterngimimether to make the effort to
parallelize a program, and how many processors are likdie tworthwhile to use to execute it.

CS 324 Computer Architecture Fall 2009

Approaches to Parallelism

Automatic parallelism is great, when it’'s possible. We gdbr free (at least once we bought the
compiler)! It does have limitations, though:

e some potential parallelization opportunities cannot biected automatically — can add di-
rectives to help (OpenMP — a topic we will not discuss today)
e bigger complication — this executable cannot run on diste-memory systems

Parallel programs can be categorized by how the cooperptingesses communicate with each
other:

e Shared Memory — some variables are accessible from multiple processesdirfiReand
writing these values allow the processes to communicate.

e Message Passing communication requires explicit messages to be sent froenpoocess
to the other when they need to communicate.

These are functionally equivalent given appropriate dpegasystem support. For example, one
can write message-passing software using shared memosgrects, and one can simulate a
shared memory by replacing accesses to non-local memohnyanseries of messages that access
or modify the remote memaory.

The automatic parallelization we have seen to this poinsissmed memory parallelization, though
we don't have to think about how it's done. The main implioatis that we have to run the
parallelized executable on a computer with multiple preoes

Ouir first tool for explicit parallelization will be shared mery parallelism using threads.

A Brief Intro to POSIX threads

Multithreading usually allows for the use of shared mema¥jany operating systems provide
support for threads, and a standard interface has beerogedePOS X Threads or pthreads.

A good online tutorial is available &t t ps: // conmputi ng. | I nl . gov/ conmputi ng/tutorial s/
pt hr eads/ .

You read through this and remember that it's there for refeze
A Google search for “pthread tutorial” yields many others.
Pthreads are standard on most modern Unix-like operatisigs)s.

The basic idea is that we can create and destroy threadsaftexein a program, on the fly, during
its execution. These threads can then be executed in pdrpltee operating system scheduler.
If we have multiple processors, we should be able to achiesfgeadup over the single-threaded
equivalent.

We start with a look at a pthreads “Hello, world” program:

8

CS 324 Computer Architecture Fall 2009

See Example:
/ hone/jteresco/ shared/ cs324/ exanpl es/ pt hreadhel | o

The most basic functionality involves the creation andesion of threads:

e pt hread_creat e(3THR) — This creates a new thread. It takes 4 arguments. The first
is a pointer to a variable of typet hr ead_t . Upon return, this contains a thread iden-
tifier that may be used later in a call pd hr ead_j oi n() . The second is a pointer to a
pt hr ead_at t r _t structure that specifies thread creation attributes. Ipthe eadhel -
| o program, we pass iNULL, which will request the system default attributes. Thedhir
argument is a pointer to a function that will be called whemnttiread is started. This function
must take a single parameter of typei d * and returnvoi d *. The fourth parameter is
the pointer that will be passed as the argument to the threadion.

e pt hread_exit (3THR) — This causes the calling thread to exit. This is called iouh
if the thread function called during the thread creationnm. Its argument is a return status
value, which can be retrieved Ipg hr ead_j oi n() .

e pt hread_j oi n(3THR) — This causes the calling thread to block (wait) until thee#a
with the identifier passed as the first argumengtttir ead_j oi n() has exited. The second
argument is a pointer to a location where the return statsisgqubtpt hr ead exi t () can
be stored. In th@t hr eadhel | o program, we pass iNULL, and hence ignore the value.

Prototypes for pthread functions are it hr ead. h and programs need to link withi bp-
t hr ead. a (use- | pt hr ead at link time). When using the Sun compiler, that flag should
also be specified to indicate multithreaded code. For FreeB&D pt hr ead flag is used.

A bit of extra initialization is necessary to make sure thstegn will allow your threads to make
use of all available processors. It may, by default, alloly @ame thread in your program to be
executing at any given time. If your program will create umtooncurrent threads, you should
make the call:

pt hread_set concurrency(n+1);

somewhere before your first thread creation. The “+1” is Bddd account for the original thread
plus then you plan to create.

You may also want to specify actual attributes as the secondreent topt hr ead creat e() .
To do this, declare a variable for the attributes:
pthread attr _t attr;

and initialize it with:

pthread_attr_init(&attr);

CS 324 Computer Architecture Fall 2009

and set parameters on the attributes with calls such as:
pthread attr_setscope(&attr, PTHREAD SCOPE_ PROCESS);

| recommend the above setting for threads in Solaris.
Then, you can pass at t r as the second parametertbhr ead_creat e() .

Any global variables in your program are accessible to a#dls. Local variables are directly
accessible only to the thread in which they were createdjghdhe memory can be shared by
passing a pointer as part of the last argumemittor ead _cr eat e() .

Brief Intro to Critical Sections

As you may have been shown in other contexts, concurrensadoeshared variables can be
dangerous.

Consider this example:

See Example:
/ home/ j t eresco/ shar ed/ cs324/ exanpl es/ pt hr ead_danger

Run it with one thread, and we get 100000. What if we run it withr2ads? On a multiprocessor,
it is going to give the wrong answer! Why?

The answer is that we have concurrent access to the shaialllgaount er . Suppose that two
threads are each about to exeaubeint er ++, what can go wrong?

count er ++ really requires three machine instructions) lpad a register with the value of
count er’s memory location,) increment the register, andi4{) store the register value back
in count er’s memory location. Even on a single processor, the opgratystem could switch
the process out in the middle of this. With multiple processthe statements really could be
happening concurrently.

Consider two threads running the statements that madifynt er :

Thread A | Thread B
A; RO = counter; B; Rl = counter;
A, RO = RO + 1; B, Rl =Rl + 1;
As counter = RO; Bs counter = Ri1;

Consider one possible ordering; A, B, A3 By Bs , wherecount er =17 before starting. Uh
oh.

What we have here israce condition that can lead tinterference of the actions of one thread with
another. We need to make sure that when one process starifyimpd ount er , that it finishes
before the other can try to modify it. This requigschronization of the processes.

When we run it on a single-processor system, the problem ikaiylto show itself - we almost
certainly get the correct sum when we run it. However, theneo guarantee that this would be

10

CS 324 Computer Architecture Fall 2009

the case. The operating system could switch threads in tddlenof the load-increment-store
sequence, resulting in a race condition and an incorreattrégy the program on a uniprocessor
with dozens of threads and you might start to run into prollem

We need to make those statements that incremeuant er atomic. We say that the modification
of count er is acritical section.

There are many solutions to the critical section problemtarglis a major topic in an operating
systems course. But for our purposes, at least for now, iffiie®unt to recognize the problem, and
use available tools to deal with it.

The pthread library provides a construct callechatex (short for themutual exclusion that we
want to enforce for the access of theunt er variable) allows us to ensure that only one thread
at a time is executing a particular block of code. We can usefik our “danger” program:

See Example:
/ home/ j t eresco/ shar ed/ cs324/ exanpl es/ pt hr ead_nodanger

We declare a mutex like any other shared variable. It is of ptphr ead_nut ex_t . Four func-
tions are used:

pt hr ead_mut ex_i ni t (3THR) —initialize the mutex and set it to the unlocked state.

pt hr ead_mut ex | ock(3THR) —request the lock on the mutex. If the mutex is unlocked,
the calling thread acquires the lock. Otherwise, the thisddocked until the thread that
previously locked the mutex unlocks it.

pt hr ead_mut ex | ock(3THR) — unlock the mutex.

pt hr ead_mut ex _dest r oy(3THR) — destroy the mutex (clean up memory).

A few things to consider about this:

Why isn’t the access to the mutex a problem? Isn'tit just a sheed variable itself? — Yes, it's

a shared variable, but access to it is only through the pth#dd. Techniques that are discussed
in detail in an operating systems course are used to ensatradbess to the mutex itself does not
cause a race condition.

Doesn't that lock/unlock have a significant cost?- Let’s see. We can time the programs we've
been looking at:

See Example:
/[honme/jteresco/ shared/ cs324/ exanpl es/ pt hr ead_danger _ti ned

See Example:
/ home/ j t eresco/ shar ed/ cs324/ exanpl es/ pt hr ead_nodanger _ti ned

Try these out. What are the running times of each version?apserthe cost is too much if we're
going to lock and unlock that much. Maybe we shouldn’t do se@imlocking and unlocking. In
this case, we're pretty much just going to lock again as ssomeacan jump back around through
thef or loop again.

This is a good example of the parallel overhead we mentioadoke

11

CS 324 Computer Architecture Fall 2009

Here's an alternative:

See Example:
/ home/ j t eresco/ shar ed/ cs324/ exanpl es/ pt hr ead_nodanger _coar se

In this case, the coarse-grained locking (one thread getbalds the lock for a long time) should
improve the performance significantly. How fast does it raw® But at what cost? We've

completely serialized the computation! Only one threadarnally be doing something at a time,
so we can't take advantage of multiple processors. If thenfmatation” was something more
significant, we would need to be more careful about the geaitylof the locking.

Data Parallel Computation

Tasks such as many scientific computations can be solved adata parallel programming style.
A data parallel program is one in which each process exetiesame actions concurrently, but
on different parts of shared data.

Contrast this with gask parallel (or a pipelined) approach, where different processes eadbrm
a different step of the computation on the same data.

An important consideration in a data parallel computat®load balancing — making sure that
each process/thread has about the same amount of work to therwise, some would finish
before others, possibly leaving available processorsvitlide other processors continue to work.
Load balancing will be an important topic throughout therseu Parallel efficiency and scalability
of a data parallel computation will be highly dependent omadjoad balance.

This is our first real example dghread/process synchronization, which is the main reason paral-
lelism is so hard. These examples were contrived to “eng&irdne problem to show up and to
emphasize the overhead of the solution, but in a real prokegrinterference may be very subtle
and show itself only very rarely.

Bag of Tasks Paradigm

One specific way of deciding which processes/threads dogérations on which parts of the data
is thebag of tasks. In this case, each thread/process vgoaker that finds aask (unit of work) to
do (from the “bag”), does it, then goes back for more:

while (true) {
/'l get a task fromthe bag
if (no tasks remain) break;
/ I execute the task

A nice feature of this approach is that load balancing corelée, as long as we have more tasks
than workers. Even if some tasks cost more than others, oe sarkers work more slowly than
others, any available work can be passed out to the firstadnlailvorker until no tasks remain.

12

CS 324 Computer Architecture Fall 2009

Back to our matrix multiplication example, we can break updbmputation into a bag of tasks.
We’ll choose a fine-grained parallelization, where the cotagion of each entry is one of our tasks.

See Example:
/ home/ j t eresco/ shar ed/ cs324/ exanpl es/ mat nul t _bagof t asks

Run this on a four-processor node. You should see that itlipsgtty slow. Perhaps the granularity
of the computation is too small — too much time picking outskfanot enough time doing it. We
created 562,500 tasks. This means we have to acquire th&é&;&00 times. How long does this
take to run?

We can easily break up our computation by row or column of #seilt matrix, as well. Here is a
row-wise decomposition:

See Example:
/[honme/jteresco/ shared/ cs324/ exanpl es/ mat nul t smal | bagof t asks

You should find that this is much more efficient! We coarseredgarallelism, but kept it fine
enough that all of our threads could keep busy. We still hadlt@Sks in the bag. How long does
this take to run?

Explicit Domain Decomposition

If we could improve things significantly by coarsening thegtlalism in the bag of tasks, perhaps
we can do even better by dividing up the entire computatiaadlof time to avoid any selection
from the bag of tasks whatsoever.

With the matrix-matrix multiply example, this is easy enbugwe can just giv&l ZE/ numaor ker s
rows to each thread, they all go off and compute, and thelyfirash in about the same amount of
time:

See Example:
/ homel/ j t eresco/ shar ed/ cs324/ exanpl es/ mat mul t _.deconp

Some things to notice about this example:

e During the setup, we compute the range of rows that eachdhviibe responsible for. We
can’'t simply give every thread the same number of rows, ie tlas number of threads does
not divide the matrix size evenly. The computation as shadam guarantees no more than a
one-row imbalance.

e We need to tell each thread its range of rows to compute. Beathfunctions are restricted
to a single parameter, of typ®i d *. We can use this pointer to pass in anything we want,
by putting all of the parameters into a structure.

Notice that each thread needs its own copy of this structume €an’t just create a single
copy, send it tgt hr ead _cr eat e() , change the values, and use it again. Why?

Explicit domain decomposition works out well in this exammince there’s an easy way to break
it up (by rows), and each row’s computation is equal in cost.

13

CS 324 Computer Architecture Fall 2009

Is there any advantage to breaking it down by columns in8téamv about, in the case of 4 threads,
into quadrants?

In more complicated examples, load balancing with a domagochposition may be more difficult.

What about distributed memory?

So far we have seen two ways to create a parallel program:

1. Letthe compiler do whatever it can completely automdyica

2. Create threads explicitly using pthreads

A third, that we are not discussing here, is to give hintsugfocompiler directives using a library
and compiler that supports OpenMP.

These all suffer from one significant limitation — the cogigrg threads must be able to commu-
nicate through shared variables.

How can we design and run parallel programs to work when tisere shared memory available?

Message Passing

We will now consider the message passing paradigm.

e Characteristics:

— Locality - each processor accessmty its local memory

— Explicit parallelism - messages are sent and received explicitly - programméraden
all parallelism. The compiler doesn’t do it.

— Cooperation- every send must have a matching receive in order for the agruation
to take placeBeware of deadlock! One sided communication is possible, but doesn't
really fit the pure message-passing model.

e Advantages:

— Hardware - many current clusters of workstations and supercompditevee!l into
the message passing model, and shared memory systems caass&ge passing pro-
grams as well.

— Functionality - full access to parallelism. We don’t have to rely on a coewpilThe
programmer can decide when parallelism makes sense. Bus #iso a disadvantage
- the full burden is on the programmer! Advice: If the compgan do it for you, let it!

14

CS 324 Computer Architecture Fall 2009

— Performance- data locality is important - especially in a multi-level mery hierarchy
which includes off-processor data. There is a chance foersinpar speedup with
added cache as we talked about earlier in the course. Comatiomids often MUCH
more expensive than computation.

Message Passing Libraries

e Message passing is supported through a set of library maitifhis allows programmers to
avoid dealing with the hardware directly. Programmers vtamoncentrate on the problem
they're trying to solve, not worrying about writing to spalcmemory buffers or making
TCP/IP calls or even creating sockets.

e Examples: P4, PVM, MPL, MPI, MPI-2, etc. MPI and PVM are the most common.

e Core Functionality:

— Process Management - start and stop processes, query number of procs or PID.
— Point-to-Point Communications - send/receive between processes
— Collective Communication - broadcast, scatter, gather, synchronization

e Terminology:

— Buffering - copy into a buffer somewhere (in library, hardware)
— Blocking communication - wait for some “event” to complete a communication routine
— Nonblocking communication - “post” a message and return immediately

— Synchronous communication - special case of blocking - send does not return until
corresponding receive completes

— Asynchronous communication - pretty much nonblocking

Point-to-Point Communication

All message passing is based on the singg@ed andr ecei ve operations

PO: send(addr, | en, dest, tag)

P1: receive(addr,max_len,src,tag,rec_|en)

These are basic components in any message-passing impétimenThere may be others intro-
duced by a specific library.

15

CS 324 Computer Architecture Fall 2009

addr is the address of the send/receive buffer

| en is the length of the sent message

max_| en is the size of the receive buffer (to avoid overflow)

rec_| en is the length of the message actually received

dest identifies destination of a message being sent

sr ¢ identifies desired sender of a message being received (oewlaetually came from if
“any source” is specified)

t ag a user-defined identifier restricting receipt

Point-to-Point Communication - Blocking

Blocking communication has simple semantics:

e send completes when send buffers are ready for reuse, after gessaeived or at least
copied into system buffers

e r ecei ve completes when the receive buffer’s value is ready to use

But beware of deadlockwhen using blocking routines!!

bsend(to 1) bsend(to 0)
brecv(from1l) brecv(fromO0)

If both processors’ send buffers cannot be copied into sybtdfers, or if the calls are strictly syn-
chronous, the calls will block until the corresponding ieeeall is made... Neither can proceed...
deadlock...

Possible solutions - reorder to guarantee matching sexgiveepairs, or useonblocking routines...

Point-to-Point Communication - Nonblocking
e send orr ecei ve calls return immediately - but how do we know when it's done?eWh
can we use the value?
e can overlap computation and communication

e must call awai t routine to ensure communication has completed before@esty send
buffer or using receive buffer

16

CS 324 Computer Architecture Fall 2009

Example:
Proc O Proc 1
nbsend(to 1) nbsend(to 0)
nbrecv(from11l) nbrecv(from0)
conpute...... conpute......
wai t al | wai t al |
use result use result
During the “compute......"” phase, it's possible that thenowunication can be completed “in the

background” while the computation proceeds, so when thé&&lidines are reached, the program
can just continue.

Deadlock is less likely but we still must be careful — the lurebf avoiding deadlock is on the
programmer in a message passing model of parallel compntati

Collective Communication

Some common operations don't fit well into a point-to-poiabemunication scheme. Here, we
may usecollective communication routines.

¢ collective communication occurs among a group of procassor
e the group can be all or a subset of the processors in a congutat
e collective routines are blocking

e types of collective operations

— synchronization/barrier - wait until all processors have reached a given point

— data movement - broadcast (i.e. error condition, distribute read-in eal\ scatter/gather
(exchange boundary on a finite element problem, for examgllefp-all (extreme case
of scatter/gather)

— reductions - collect data from all participating processors and ogeoat it (i.e. add,
multiply, min, max)

These kinds of operations can be achieved through a senmsrafto-point communication steps,
but operators are often provided.

Using collective communication operators provided is galtebetter than trying to do it yourself.
In addition to providing convenience, the message pastirayy can often perform the operations
more efficiently by taking advantage of low-level functiditya

17

CS 324 Computer Architecture Fall 2009

MPI

The Message Passing Interface (MPI) was created by a stncammittee in the early 1990’s.

e motivated by the lack of a good standard

— everyone had their own library
— PVM demonstrated that a portable library was feasible
— portablity and efficiency were conflicting goals

e The MPI-1 standard was released in 1994, and many impletmamggfree and proprietary)
have since become available

e MPI specifies C and Fortran interfaces (125 functions in thadard), more recently C++
as well

e parallelism is explicit - the programmer must identify geelssm and implement a parallel
algorithm using MPI constructs

e MPI-2 is an extention to the standard developed later in §89% and there are now some
implementations

MPI Terminology

¢ Rank — a unique identifier for a process

— values are O — 1 whenn processes are used
— specify source and destination of messages
— used to control conditional execution

e Group — a set of processes, associated witormamunicator

— processes in a group can take part in a collective commumigdbr example

— we often use the predefined communicator specifying thepyodall processors in a
communicationivPl _COVMWORLD

— the communicator ensures safe communication within a graywid potential con-
flicts with other messages

e Application Buffer - application space containing data to send or received data

e System Buffer - system space used to hold pending messages

18

CS 324 Computer Architecture Fall 2009

Major MPI Functions

MPI Simple Program - basic MPI functions
We begin with a simple “Hello, World” program.

See Example:
/ home/ j t eresco/ shar ed/ cs324/ exanpl es/ npi hel | o

MPI calls and constructs in the “Hello, World” program:

e #i ncl ude <npi . h>-the standard MPI header file

e MPI Init(int argc, char =*argv[]) - MPI Initialization

e MPI _COVMWORLD - the global communicator. Use ffPl _Conmargs in most situations
e MPI _Abort (MPlI _Comm comm int rc) - MPI Abort function 3

e MPI _Commsi ze(MPlI _Comm conmm i nt *nunprocs) - returns the number of pro-
cesses in a given communicatomonpr ocs

e MPI _Commr ank(MPlI _Comm comm i nt =*pid) -returns the rank of the current pro-
cess in the given communicator

e MPI _Cet processor nanme(char *nanme, int xrc) -returnsthe name of the node
on which the current process is running

e MPI _Finalize() -cleanup MPI

The model of parallelism is very different from what we haeers. All of our processes exist
for the life of the program. We are not allowed to do anythirgjoloe MPI _I ni t () or after
MPI _Fi nal i ze(). We need to think in terms of a number of copies of same program all
startingup atvPl _I nit ().

To run, compile withpi cc, run with npi r un according to the instructions on the course web
page.

MPI Point-to-Point message functions

There are just a few that we’ll use frequently:

e MPI _Send/ MPI _Recv - standard blocking calls (may have system buffer)

e MPI I send/ MPI _I r ecv - standard nonblocking calls

19

CS 324 Computer Architecture Fall 2009

e wait calls for nonblocking communication8Pl Wait, MPI Maitall, Ml _Vait-
some, MPlI Wi tany

And there are many variations that we won't likely use much:

e MPI _Ssend/ MPI _I ssend - synchronous blocking/nonblocking send

e VPl Bsend/ MPI _|I bsend - buffered blocking/nonblocking send - programmer allesat
message buffer witMPl _Buf f er _att ach

e MPI _Rsend/ MPI _I r send - ready mode send - matching receivast have been posted
previously

e MPI _Sendr ecv - combine send/recv into one call before blocking

e also:MPI _Pr obe andMPI _Test calls

Blocking Point-to-point Communication
A simple MPI program that sends a single message using bigdammunication:

See Example:
/ homel/ j t eresco/ shar ed/ cs324/ exanpl es/ npi nmsg

e All MPI calls return a status value, and it's a good idea toockheas is done in this example
for theVPI _I ni t call.

— Most class examples will not be thorough in this to keep thilegking simpler.

— For our purposes, any MPI error will cause the program to iteate with an error
message, so it usually is not that important to us.

— When developing large-scale software, we often wish to meturor codes rather than
crash the whole program, so error checking becomes moreriamiahere.

— The error checking includes a messy little chunk of code tat jput appropriate mes-
sages, so it's probably worth putting this into your own ergporting function if you
want to use it.

e MPI _St at us st at us - structure which contains additional info following a reee We
often ignore it, but we will see some instances where it comésandy.

e MPI Send(void *buf, int count, Ml Datatype type, int dest, int
tag, MPI _Comm comm) - blocking send - does not return until the correspondingixec
is completed. sendsount copies of data of typéype located inbuf to the processor
with pid dest .

20

CS 324 Computer Architecture Fall 2009

e MPI Recv(void *buf, int count, MPI Datatype type, int src, int
tag, MPI _Conm comm MPI _St atus st at us) - blocking receive - does not return
until the message has been receivedc may be specific PID avPl _ANY_SOURCE which
matches, well, a message from any source.

e VPl Dat at ype examplesiVPl _CHAR, MPI I NT, MPI _LONG WPl _FLOAT, MPI -
DOUBLE, WPl BYTE, MPI _PACKED

Non-blocking Point-to-point Communication

A slightly more interesting MPI program that sends one mgsgeom each process with non-
blocking messages:

See Example:
/ hone/ j teresco/ shared/ cs324/ exanpl es/ npi ri ng

e MPI Request request - structure which contains info needed by nonblocking dalls
check on their status or to wait for their completion.

e MPI Isend(void *buf, int count, MPI Datatype type, int dest, int
tag, MPI _Comm comm MPI Request =req) - nonblocking send - returns immedi-
ately.buf must not be modified until a wait function is called using tt@quest.

e WPl Irecv(void =buf, int count, Ml Datatype type, int source,
int tag, MPI _Comm conm MPI _Request =*req) - nonblocking receive - returns
immediately.buf must not be used until a wait function is called using thisiesq.

e MPI Wit (Ml Request *req, MPI _Status =*status) -waitfor completion of
message which hadeq as its request argument. Additional info such as source dssage
received ad/Pl _ANY_SCOURCE is contained irst at us.

The MPI _ANY_SOURCE option is used in this modified version of the example:

See Example:
/[honme/jteresco/ shared/ cs324/ exanpl es/ npi ri ng_anysour ce

Collective Communication
We often need to perform operations at a higher level thaplsisends and receives.
See Example:
/ homre/ j t eresco/ shar ed/ cs324/ exanpl es/ npi col |
e MPI Barrier (Ml _Conmm comm - synchronize procs

e MPI Bcast (void *buf,int count, VPl Datatype type,int root, MPl _Comm
comm) - broadcast - senadsount copies of data of typey pe located inbuf on procr oot
to buf on all others.

21

CS 324 Computer Architecture Fall 2009

e MPI Reduce(voi d *sendbuf, void *recvbuf,int count, MPI _Datatype
type, MPl _Op op,int root, MPl _Comm comm) - combines data irsendbuf on
each proc using operatiap and stores the result mecvbuf on procr oot

e VPl Al'l reduce() -same as reduce except result is storedagnvbuf on all procs

e MPI OpvaluesVPl _MAX, MPI M N, MPI _SUM MPI _PROD, MPI _LAND, MPI _BAND,
MPI _LOR, MPI _BOR, MPI _LXOR, WMPI _BXOR, MPI _MAXLOC, MPI _M NLOCplus user-
defined

e MPI Scan(void *sendbuf, void *recvbuf, int count, MPI Datatype
type, MPI _Op op, MPI _Comm conm) - parallel prefix scan operations

Scatter/Gather — Higher-level Collective Communication

See Example:
/[honme/jteresco/ shared/ cs324/ exanpl es/ npi scat gat h

e MPI Scatter(void *sendbuf, int sendcount, MPI _Datatype sendtype,
voi d *recvbuf, int recvcount, MPI Datatype recvtype, int root,
MPI _Comm conm) -r oot sendssendcount items fromsendbuf to each processor.
Each processor receivegcvcount items intor ecvbuf

e WPl Gat her (void *sendbuf, int sendcount, MPI Datatype sendtype,
voi d *recvbuf, int recvcount, MPI Datatype recvtype, int root,
MPI _Comm conmm) - each proc sendsendcount items fromsendbuf tor oot . r oot
receiveg ecvcount items intor ecvbuf from each proc

e VPl _Scatt erv/ MPl _Gat her v work with variable-sized chunks of data

e MPI _Al'l gat her/ MPI _Al | t oal | variations of scatter/gather

To understand what is going on with the various broadcastsaatter/gather functions, consider
this figure, taken from the MPI Standard, p.91

22

CS 324 Computer Architecture Fall 2009

datg ——=
?, Ag Ag
g Ao
a broadeast
o
5 : A
0
Ag
Ag
Aglagas]as] A,] As scatter Ag
—> o
Aa
gather A
3
< : Ay
Ag
A Ao BolCo|Po|Fo| o
By Ag|Bo| Co|Do| Eo| Fo
allgather
Cq g Ag|Bg|CqlDg| Eq| Fo
By |:> A0|B0| 0|0/ Bo| Fo
o A0]Bo| S0/ o|Bo| Fo
Fo Ao BolCo|Po|Fo| Fo
Al Ay ay]as] A, Ag agl ol col oyl Egl Fp
BB, |B,|B.|B,|B a,|e,|c, o, |E |F
o] B1]|B2|Ba|By| Bs alitoall 1B G Py B Py
€yl Syl | CalCulCs A CACA AN
CAEAERENEAEE AN EAEN N
Eo| Eq|Es| Ea| Byl Es AACACA AL
FolF1|Fz| P3| Fe|Fs Ag|Bs5|C5| 5| Fs| Fs

Sample MPI Applications

Conway’s Game of Life

The Game of Life was invented by John Conway in 1970. The gampkayged on a field of cells,
each of which has eight neighbors (adjacent cells). A calitiser occupied (by an organism) or
not. The rules for deriving a generation from the previous are:

e Death: If an occupied cell has 0, 1, 4, 5, 6, 7, or 8 occupiedhimrs, it dies (of either
boredom or overcrowding, as the case may be)

e Survival: If an occupied cell has 2 or 3 occupied neighbadigjiivives to the next generation

e Birth: If an unoccupied cell has 3 occupied neighbors, it Inee® occupied.

The game is very interesting in that complex patterns antksyarise. Do a google search to find
plenty of Java applets you can try out.

23

CS 324 Computer Architecture Fall 2009

| like the one here:
http://ww. mat h. com st udent s/ wonders/life/life.htm

My implementation is not graphical, so it's a lot less funpliays the game, but only computes
statistics.

Serial versionSee Example:
/[honme/jteresco/ shared/ cs324/ exanples/life

MPI version:See Example:
/ home/ j t eresco/ shar ed/ cs324/ exanpl es/ npilife

e Since our memory is not shared, we only allocate enough meprmeach process to hold
the rows that will be computed by that process, plus a “ghast’ on each side that will
allow simple computation of our rows.

¢ When we need to get a global count of some statistic, such asoth# of live cells at the
start, we use a reduction.

e The communication is done with two pairs of sends and reseiere, we use nonblocking
calls, then wait for their completion with the waitall call.

Matrix-Matrix Multiplication

Matrix-matrix multiplication using message passing is aetstraightforward as matrix-matrix
multiplication using shared memory and threads. Why?

e Since our memory is not shared, which processes have cdpiies matrices?
¢ Where does the data start out? Where do we want the answer tahHs=end?
e How much data do we replicate?

e What are appropriate MPI calls to make all this happen?

The MPI version of Conway’s Game of Life used a distributecdsitucture. Each process main-
tains its own subset of the computational domain, in thi® ¢gast a number of rows of the grid.

Other processes do not know about the data on a given proOedg.that data that is needed to
compute the next generation, a one-cell overlap, is exawhgtween iterations.

Think about that — no individual process has all of the infation about the computation. It only
works because all processes are cooperating.

The “slice by slice” method of distributing the grid was chn®nly for its simplicity of implemen-
tation, both in the determination of what processes arengivieat rows, and the straightforward
communication patterns that can be used to exchange bgudat. We could partition in more
complicated patterns, but there would be extra work invalve

24

CS 324 Computer Architecture Fall 2009

The possiblities for the matrix-matrix multiply are numeso Now the absolute easiest way to do
it would be to distribute the matriA by rows, haveB replicated everywhere, and then h&avey
rows. If we distributed our matrices this way in the first @aeverything is simple:

See Example:
/[home/jteresco/ shared/ cs324/ exanpl es/ mat nul t _npi _t oosi npl e

This program has very little MPI communication — this is bgide, as we distributed our matrices
so that each process would have exactly what it needs.

Unfortunately, this is not likely to be especially usefuloié likely, we will want all three matrices
distributed the same way.

To make the situation more realistic, but still straightfard, let's assume that our initial matrices
AandB are distributed by rows, in the same fashion as the Life satoul Further, the result matrix
Cis also to be distributed by rows.

The process that owns each row will do the computation fdrrtha What information does each
process have locally? What information will it need to reduiesn other processes?

Matrix multiplication is a pretty “dense” operation, and wesend all the columns d to all
processes.

See Example:
/ hone/ j teresco/ shared/ cs324/ exanpl es/ mat nul t _npi _si npl e

Note that we only initialize rows 0B on one process, but since it's all needed on every process,
we need to broadcast those rows.

Can we do better? Can we get away without storing aB oh each process? We know we need
to send it, but we we do all the computation that needs eaclbedare continuing on to the next?

See Example:
/ homel/ j t eresco/ shar ed/ cs324/ exanpl es/ mat nul t _npi _better

Yes, all we had to do was rearrange the loops that do the ambugbutation of the entries @.
We can broadcast each row, use it for everything it needs tsée for, then we move on. We save
memory!

Even though we do the exact same amount of communicatiomrmenrory usage per process goes
from O(n?) to O(%).

25

