Computer Science 324
M [] (C Computer Architecture
_— Mount Holyoke College

MOUNT HOLYOKE COLLEGE Fa“ 2007

Topic Notes: Building Memory

We’ll next look at how we can use the devices we've been lapkitto construct memory.

Tristate Buffer

We've seen and used inverters.

We also mentioned when we first saw inverters that we can putdgether in series and have a
buffer.

We can draw one of these as a triangular symbol but with néecatcthe end.
What use is that? It will slow down but also boost the currerhecircuit.

Recall that large fan-out can cause trouble with not enougtectito drive subsequent gates. A
buffer can take care of that.

We think about a wire or an output as having values of O or 1aii lse easy to think about the
value 0 as the absence of a value, but that’s not true.

Connected to ground or to a low gate output is different tharcapnected.

You can think of the wire as transmitting some value. A 0 vatheans the wire like a pipe spilling
out O’s, a 1 value is like a pipe spilling out 1’s.

Or like a pipe with hot water flowing vs. a pipe with cold watewing.
But a disconnected wire or a pipe with no water source isnllisgiout anything.
So even in our circuits so far, there could be a wire or a gateomnected to anything.

Now, we’ll look at a new device calledtaistate buffer.

in —D— out

control

When the control line is high, we have a wire (with some ampidyproperties) like a buffer.

When control is low, it looks like a broken wire — physicallysdonnected.

CS 324

Computer Architecture Fall 2007

Don’t worry how it’s built for now.

What use is a device like this?

Well, if we have a point in a circuit where we know that exacthe of a number of outputs will be

high, as in a MUX:

We couldn’t just tie the outputs of the ANDs together becausecan’t feed back the output of
some gates through the output lines of others. We had to fesd through an OR gate to the

output.

CS 324 Computer Architecture Fall 2007

1- 011
K]
ol big -
0- :
ce— - BOT
I;I— :
- pog -
0 :

Since only one of the tristate buffers will be connected, ae gafely do what looks like a “wired

or-.

Driving the Bus

We can use this idea to allow one of multiple inputs to be mlameto a wire for transmission
somewhere else.

Such a wire is called bus.
A bus must have exactly O or 1 “drivers”.
This will be useful when we want to connect up our CPUs to a bdmkemnory.

In that case, tristate buffers can be used to determine whéik bus is being used to send data
from the CPU to memory, from the memory to the CPU, or neitherhBan’t be done at once.

If we activated multiple tristate buffers and had multiplesldrivers, we can make some toasters
(sending the signal backwards through our gates).

Building Memory Devices

Suppose we wish to build a device that holds 4 bits of memory.

CS 324 Computer Architecture Fall 2007

/logn 4x1

RD/WRT

Cs

What does all this mean?
1. 4 x 1: 4 is the number of units of memory, 1 is thddressability, the smallest number of
bits we can address.

2. D is a bidirectional data bus:

e when we want to store a value in the memory, we put that value on
e when we want to retrieve a value from memory, its value is pubo

e D consists of a number of wires equal to the addressabilithe@htemory
3. Ais the address lines

e need to be able to select from amongralinits of memory
e so we needog,(n) address lines
e specifies which bits are being read from or written to the data

4. RD/W RT selects whether the chip should be reading or writing — “wlipiving the bus?”

5. CS'is chip select. Are we doing anything with this chip right riow

How can we build this out of components we have seen?

We use 4 D-type flip-flops and connect them up to our inputsppeo@riate.

CS 324 Computer Architecture Fall 2007

[«

RD/WRT
D
A W P
D00 kj
L cLk
TP
00 ~ D01
01 CLK _
A7l 10 % %
11
decoder P Q
D10
> CLK
L D11
o
How it works:

1. Correct address line is set high by the decoder. This vadlde 3 of the 4'L K inputs and
3 of the 4 AND gates that mask outputs of the flip-flops.

2. Data line is fed as input, unconditionally, to all flip-fkap

3. WhenC'S (“chip select”) is low, all 4 input AND gates are low, inhiliig anyC' L K input.
Also, and the AND gate at the output is low, disconnectingttistate buffer.

4. WhenRD /W RT is high, an input to all 4 input AND gates is low, 60_ K is inhibited.

5. WhenRD/W RT is low, the AND gate controlling the tristate buffer is loweaning the
output is not being sent tb.

6. When bothC'S and RD /W RT are high, the output being sampled from one of the D flip-
flops is being passed throughfa One of the tri-state buffers is “driving the bus”.

7. WhenC'S is high andRD /W RT is low, we assume someone else is “driving the bus” and
is putting the values on the bus that we wish to store in onaioflip-flops.

Fall 2007

CS 324 Computer Architecture

We have a 4-bit memory!

4x4 Memory
We normally don’t think about storing our memory just onedtit time.

How about building a device that can store 4 4-bit values?

72 4x4

Here, we have the same 2 address lin@3/ /W RT line and a chip select, but instead of a single
data line, we have 4 data lines.

We will build our 4x4 device out of 4 41 devices:

5 / TDo DTl DTZ D3
A
11 . .
D D D D
A A A A
4x1 4x1 4x1 4x1
RD/WRT RD/WRT RD/WRT RD/WRT
|7 CS |7 CS |7 CS CS
RD/WRT
CS l l l

Note that the data buB is actually 4 wires, and we only connect one of the 4 to eacheofik 1's.

4x8 Memory

So far, we've gone from the D-type flip flip, (which we can thiokas a x1 memory device) to
a 4x 1 by adding 2 address lines, and using a decoder to have ttdsesa lines activate one of 4
1x1 devices.

Then we went from 41 to 4x4 by having 4 data lines, each of which goes to one of thé 4
devices.

CS 324 Computer Architecture Fall 2007

We could do the same thing for ax8 device — 8 data lines, each of which is fed into a separate
4x 1 device.

But if we already have 44 devices, we can expand tx8:

D3 D4-D7

/DO-

D

A

dA
4 4
D D
A A
4x4 4x4

RD/WRT RD/WRT
CS CS

RD/WRT
CS

=

That's 4 bytes of memory.

1KB memory
Now let’'s consider how we might build a kilobyte of memory ofibur 4x 8 devices.

The device we're trying to build will look like this:

710 1Kx8

72 4x8

CS 324 Computer Architecture Fall 2007

We refer to each of these«8 devices as bank of memory.

Of our 10 address lines, 8 are used to select among the 256 badkhe other 2 select among the
4 bytes on the bank chosen.

If we think of our address lines as bitg As... Ay, two main possibilities come to mind for how to
organize things:

e Option 1: A; and A, select the byte within a bank antl... A, select the bank.

e Option 2: Ay and Ag select the byte within a bank ant}... A, select the bank.
In either case, we want all 8 data lines wired to each bank, am WheR D /W RT wired to each
bank.
Our two lines to select a byte within a bank are wired to thereskllines of the bank.

The other 8 address lines are passed through a decoder,eadddbder outputs are ANDed with
the C'S inputs of the whole circuit then wired to tl{&S inputs of each bank:

Bank O

/ / .
ATn 7

A 4x8

[cs

Bank 1

N

N\

A 4x8

s

8-t0-256 |
DECODER| .

Bank 255

A 4x8

e

CS 324 Computer Architecture Fall 2007

Which bytes are stored on which chips with the two layout oystid

Bank| Option1 Option 2
0 0-3 0, 256, 512, 768
1 4-7 1, 257,513, 769
2 8-11 2,258,514, 770

254 | 1016-1019 254, 510, 766, 1022
255 | 1020-1023 255, 511, 767, 1023

Each possible configuration has advangates and disadesntag

Option 1 means we can lose a chip and still have large chungsraiguous memory available.

Option 2 has advantages for chip layout.

SIMM Layout

You have probably seen and maybe used memory chips of the SiviMingle in-line memory
module) type.

7 a{(glllress lines
64 data lines

Suppose we have 1 KB of memory of 8-bit bytes.

This requires 10 bits for full addressing, 8 data lines.

But this is not normally how it would be set up.

More likely, you would find 64 data lines and only 7 addresedin

What does this mean?

It's really an 8-byte addressable memory. We load/store ongiin chunks of 8 bytes at a time, so
there are only 128 addressable chunks.

When memory is requested, say address 1.
A = AgAsg...Ay = 0000000001
The 7 high bits of the address, 3 = 0000000 are sent to the SIMM on the address lines.

We get back bytes 07, even though we only wanted 1. It's upgdPU, which still has the full
address (includingl; A; Ap) to pick out the byte it’s interested in.

To access location 517 = 1000000101, we request 8-byte dbunknd take byte 5 of those that
come back.

CS 324 Computer Architecture Fall 2007

This memory is organized using “Option 2” from our discugssabout how to arrange memory
among multiple banks.

This may at first seem wasteful, but the memory chip can g& lajites easily and more wires in
and out means we can transfer more memory more quickly.

Plus.. there’s a good chance that any memory access willlog/él by additional memory access
to nearby locations (think — local variables, an array, sejal program text).

Thislocality is a natural feature of most programs.
All machines today have memory that is addressable in somnekdarger than one byte.

The decisions about how we break this down have ripple affilcbughout the architecture. We
will soon see this in much detail.

Error Detection and Correction

You have probably heard about error correcting memory.

If we want to do this, we need to build in some redundancy.
We can detect a single-bit memory error by addingpaty bit.

For example, if we have an 8-bit data value and we want to miaiven parity, we add a 9th bit
that makes the total number of bits that are set an even number

byte even parity bit
00000000 0
00000001 1
01110100 0
11000111 1
11111111 0

From this, we can check, each time we retrieve a byte, thatsselien paity. If not, we know that
something is wrong.

But that's all it tells us. Since we don’t know which of the 9sbiétre wrong, we can't fix it.

Some of you may have had computers that crash with a Blue Sof&sath saying that a memory
parity error was detected.

This is not just a Windows thing - | have had Unix systems craish a kernel error that a memory
parity error was detected.

To fix it, we need more extra bits.

Here’s one error correction scheme that can fix a single kot &ut at the expense of 4 extra bits
for each byte of memory (50% overhead).

We have 12 bits used to represent the 8-bit value. We number fi2-1 and use the ones whose
numbers are powers of 2 as parity bits:

10

CS 324 Computer Architecture Fall 2007

12 11 10 9 8 7 6 5 4 3 2 1
1100 1011 1010 1001_10000111 0110 0101 01000011 0010 0001

We use the parity bits as follows:

1. Position 1 stores the even parity of odd-numbered bits

2. Position 2 stores the even parity of bits whose numbertea®'’s bit set
3. Position 4 stores the even parity of bits whose numberhea4’s bit set
4,

Position 8 stores the even parity of bits whose numberhea8’s bit set

So to store the value 94 = 01011110 we first fill in the data bits:

0 1 0 1 . 1 1 1 . 0 _ _
1100 1011 1010 1001_10000111 0110 0101 _01000011 0010 0001

Position 1 stores the even parity of the bits at 3, 5, 7, 9, 1df those are set to 1, so we set that
bit to O.

Position 2 stores the even parity of the bits at 3, 6, 7, 1031df.those are set to 1, so we set that
bitto 1.

Position 4 stores the even parity of the bits at 5, 6, 7, 12. tBade are set to 1, so we set that bit
to 1.

Position 8 stores the even parity of the bits at 9, 10, 11, 1&f tBese are set to 1, so we set that
bit to 0.

0 1 0 1 0 1 1 1 1 0 1 0
1100 1011 1010 1001_ 10000111 0110 0101 01000011 0010 0001

When we retrieve a value from memory, we can make sure it's OBdoyputing the 4 parity bits
and comparing to the stored parity bits.

If they all match, we’re OK.
If there’s any mismatch, we know there’s an error.
Let’s introduce an error into our stored value. We'll chatigethird bitto a 1.

0 1 1 1 0 1 1 1 1 0 1 0
1100 1011 1010 1001_10000111 0110 0101 _01000011 0010 0001

So we recompute the parity bits on the value we retrievedcantpare to the stored bits:

bit computed stored match

P 0 0 0
Py 0 1 1
P, 1 1 0
Py 1 0 1

We can quickly detect the mismatchesfnand P (hey! XOR!)

11

CS 324 Computer Architecture Fall 2007

This means that the bit at position 1010 has an error and neuipped. Convenient!

Think about how this might be implemented

e the memory itself doesn’t even need to know
e we can drop in some XORs to generate parity bits to be storegmary
e we XOR again to regenerate parity bits for retrieved values

e still more XOR to do correction

This works even if the parity bit is the one that has an ertqust ends up “fixing” the parity bit.

It does not work for 2-bit errors.

12

