
Computer Science 324
Computer Architecture
Mount Holyoke College
Fall 2007

Topic Notes: Data Paths and Microprogramming

We have spent time looking at the MIPS instruction set architecture and building up components
from digital logic primitives. Our next goal is to see how we can use the physical devices we have
studied to construct the hardware that can execute MIPS instructions.

A MIPS Subset Implementation
To keep things manageable, we will consider a subset of key MIPS instructions.

1. memory access:lw, sw

2. arithmetic/logical:add, sub, and, or, slt

3. control flow:beq, j

The same ideas and techniques that we will use to implement this basic subset can be used to build
a machine to implement the entire MIPS ISA, and in fact, most modern ISAs.

Let’s think about what needs to be done to implement these instructions.

First, recall the loop that our machine will execute:

1. Fetch the instruction from memory at the location indicated by the program counter

2. Update the program counter to point to the next instruction to be executed

3. Decode the instruction

4. Execute the instruction

5. Go to 1

The first two steps are done the same way, regardless of the instruction we’re going to execute.
During the decode and execution steps, the implementation becomes instruction-specific.

At that point, the instruction may result in a register valuebeing written into memory, a register
value being read from memory, two registers being set as inputs to the ALU and the ALU result
written back to another register, or the PC possibly modifiedby a conditional branch or uncondi-
tional jump.

We’ll follow the basic implementation in P&H Chapter 5. We start with an abstract view and fill
in the details.

CS 324 Computer Architecture Fall 2007

The first view is in Figure 5.1.

Let’s understand what’s in this diagram:

• Functional units:

– Separate instruction and data memories: this allows the instruction to be fetched and a
data value to be read or written from memory in the same instruction cycle

– Register file: the 32 32-bit registers we saw earlier in the semester

– Program counter (PC) register

– Main ALU

– Two additional adders, one that always adds 4 to the PC (for when we are simply going
to advance to the next instruction), and another that computes branch targets

• Data paths:

– PC gets passed to the instruction memory and to the +4 adder

– The fetched instruction is decoded and appropriate bits aresent to the input of the
second branch target adder (when PC offsets are part of the instruction), to the register
file to determine which registers are to be used by the instruction (needed by nearly all
instructions) and directly as an ALU input (for immediate mode operands)

– The result of the PC adders is sent back to update the PC

– Register file outputs are fed into the ALU and into the data memory

– Main ALU outputs can determine the address for a main memory access or can be fed
back to the register file for storage

– A value read from the data memory may also be passed back to be stored in the register
file

This view is too simplistic for several reasons. In our first refinement of the original abstract
diagram, we add some multiplexers and control lines.

This refinement is shown in P&H in Figure 5.2.

What have we added in this refinement?

• Multiplexors replace the “wired or” points in the diagram – those places that two possible
inputs come together

– The MUX at the top selects which value is used to update the PC

– The MUX whose output goes to the data input of the register fileselects between an
ALU result and a value read from memory

– The MUX whose output goes to the main ALU input selects between a second register
to the ALU and an immediate value taken from a bit field of the instruction

2

CS 324 Computer Architecture Fall 2007

• Control lines to determine the operation of the individual components

– The control structure is guided mainly by the instruction, hence the new communication
path from the instruction to theControl oval

– ThatControl decodes the instruction and determines which of our functional units
are involved in this instruction and what operations they need to perform

– If the instruction involves storing a value in a register, the RegWrite line is set and
the value sent to the “Data” input of the register file is stored in the destination register

– If the instruction islw, theMemRead line is set, causing the data memory to retrieve
the value at the address computed by the ALU and sends it to thedata input of the
register file (which also requires that the MUX selects the memory output to be passed
to that input)

– If the instruction issw, theMemWrite line is set, causing the value retrieved by the
source register to be written to the memory location as determined by the output of the
main ALU

– The main ALU is always computing something, and in those cases that its result is
important, a set of control lines tell the ALU which of its functions to compute

– Finally, if it is a branch instruction, theBranch line is set. If the main ALU also
produced a zero result (which would cause the ALU to set theZero line), the PC
MUX selects the value from the branch target ALU instead of the +4 ALU to be passed
to the PC

Building these Components

Our design consists of

1. combinational units – ALUs

2. state elements – memories and registers

3. data signals – information that is stored in memory, registers, or used as inputs and outputs
of ALUs

4. control signals – information that controls what the combinational units are to compute,
which values should be passed through by the multiplexors, and when state elements should
assert their values as data signals (drive the bus) or updatetheir values based on input data
signals

All of our components need to be synchronized properly to ensure that inputs and outputs are
available at appropriate times.

For example, we have seen flip-flops (and registers built fromthose flip-flops) that load new values
only on the leading edge of the clock. In those cases, we need to make sure that the input is

3

CS 324 Computer Architecture Fall 2007

presented and control lines set appropriately when the clock that controls those flip-flops goes
high.

This is sometimes easy – value is ready and available when we need it. Other times, the timing
is more subtle. Since combinational units arealwayscomputing, we need to make sure the input
values are presented and the control lines remain correct long enough for the output to be computed
and captured.

We consider subsets of the design proposed earlier.

First, the PC and instuction memory.

• Memory is usually thought of as a state element, but the instruction memory is never mod-
ified by our simple data path, so it is always producing the instruction value at the location
specified on the instruction address (Of course, the programhas to get there somehow, so
there must be a write capability but we will not consider it for now)

• The PC is just a single register. It can always be writing its value to the instruction address
input, and should read a new value at the end of the instruction execute cycle, once we have
computed the new PC value

• The adders are combinational units along the lines of those we constructed. One is hardwired
to add 4 (and could be replaced with a simpler circuit than a ripple-carry adder if we wanted
to save some gates and delay – remember your lab problem).

Next, we consider the implementation of R-format instructions:

op $t1, $t2, $t3

This will write a value to register$t1 as a result of applying the specified operation on$t2 and
$t3.

Thus, we need our register file to be able to produce two outputdata values and receive one input
data value.

We also need to be able to determine which of the 32 registers is to be used to each operand. This
information comes directly from the bits of the instructionthat specify the two source registers (rs
andrt) and the destination register (rd).

To achieve this, we can first decode those 5-bit values using 35-to-32 decoders, calling the decoded
signalsrs0, rs1, ... rs31, rt0, rt1, ... rt31, rd0, rd1, ... rd31.

We can then implement each registeri as a 32-bit register:

4

CS 324 Computer Architecture Fall 2007

32

Register i
D

Q
CLK

RegWrite

Data Input bus

rdi

rs bus output

rt bus output

rsi

rti

32

That takes care of the register file.

What about the main ALU?

Appendix B on the CD with the text describes the ALU construction. We have seen just about
everything we need, so we will look at the book’s figures to seehow an ALU tailored to this MIPS
subset can be constructed.

Key ideas:

• construct circuits to compute each needed input

• multiplex the outputs based on an operation selection control line set

• AND and OR are trivial

• we know how to build an adder/subtractor - this ALU works similarly

• Also needslt support: set on less than

– we can tell thata < b if we find that(a − b) < 0

– however, the bit of the ALU that detects whether this value isnegative is the high-order
(sign) bit, but we want to set the low-order bit in this case

– Appendix B shows special circuitry needed to accomplish this

– all bits have aLess input, which will be 0 on all but the low-order bit, where it is
connected to a copy of the sign bit

• And to supportbeq, we need to have an output that subtracts one of the registersbeing
compared to the other, then checks if the result is zero

• The ALU has 4 control lines but only 6 meaningful combinations, as seen in Figure B.5.13.

– in this table, the first control line isAinvert, which is only used for theNOR func-
tionality

5

CS 324 Computer Architecture Fall 2007

– the second isBnegate, used when we want subtraction (either for thesub instruction
or because we need the result of a subtraction forslt) or NOR (where we only care
about the “invert” part of the “negate”)

– the last two control the multiplexor that selects among the outputs of the AND gate,
OR gate, full adder, orLess

Implementing Remaining Instructions in our Subset

First, the load and store instructions, which are in the I-format.

lw $t0, 1200($t1)
sw $t2, 32($t1)

In either case, we need to retrieve the value$t1 from the register file, and add to that the offset,
which is part of the instruction itself. We’ll use the main ALU for this. The value computed is the
effective addressfor the memory access.

We can’t just take the 16 bits from the instruction and add it directly to the contents of the base
register. The offset may be negative, so we will need a sign extension unit that will copy the
contents of the high order bit of the offset into all higher bits, giving us the 32-bit equivalent.

For alw instruction, we instruct the memory to retrieve the value atthe effective address, and it
will be stored back in the register file at the destination.

For asw instruction, we need to take the value in the source registerfrom the register file, and
present it as input to the memory and tell the memory to write.

This gives the data path shown in Figure 5.10 of P&H (which ignores branch and jump instruc-
tions).

For thebeq instruction, we also need to sign extend the offset value, but then shift it left by 2
before feeding it to the branch target adder. The left shift by 2 accounts for the fact that the branch
offset is a number of words, not bytes, that must be added to thePC+4 value to obtain the branch
target location.

Other than that, we need to send the two register values to theALU to see if they are equal (which
we accomplish by testing if the difference produces a 0 result).

The data path for this part is shown in Figure 5.9 of P&H.

If we put together everything we have seen so far, we get the data path of Figure 5.11 of P&H.

This handles all of our instructions exceptj.

Adding Control

Now we want to add the details of the control to the data path.

First, we consider the ALU. We saw that it has 4 control lines.When do we want to set these lines?

6

CS 324 Computer Architecture Fall 2007

This process is a familiar one for us: based on the instruction opcode field and (if the opcode
indicates an R-format instruction), thefunct field, we can compute 4 expressions (and hence
circuits) that set the ALU control lines appropriately.

Figures 5.12 and 5.13 in P&H show some details of this, but we will not worry about those details
at this point.

Next, we consider how the fields of the instruction are used toconstruct the rest of the needed
control signals.

A refinement is shown in Figure 5.15 of P&H.

• Our instruction memory produces the 32-bit instruction word.

• Bits 15-0 (theaddress field for an I-format instruction) are sent to the sign extension unit
to be used as potential input values by the ALU.

• Bits 5-0 (thefunct field for an R-format instruction) are sent to the ALU control to compute
the appropriate ALU control lines.

• Bits 25-21 (the source registerrs) are sent to the register file to select read register 1.

• Bits 20-16 (the source registerrt) are sent to the register file to select read register 2.

• The write register is more complex. Forlw, we use thert field in bits 20-16. For R-format
instructions, we use therd field in bits 15-11. An additional multiplexor and a control line
RegDst control which field is passed to the write register selectioninput.

• The other control lines are computed from theopcode in bits 31-26, as shown in Figure
5.17 of P&H. The details of the conversion of theopcode are just combinational logic,
which again, we can figure out (or look up in the text).

P&H has a series of figures (5.19, 5.20, and 5.21) that show howeach type of instruction uses this
data path.

Adding Jump

The final refinement is to add the data path and control to implement thej instruction, as seen in
Figure 5.24.

Using Multiple Cycles to Implement Instructions
The design we’ve been studying is a “single-cycle” implementation – meaning that one clock cycle
results in one instruction being executed.

This is not used in real life, mainly because of the inefficiency:

• Every instruction takes the same amount of time – we don’t make the common case fast

7

CS 324 Computer Architecture Fall 2007

• We have redundant elements: the two memory systems, multiple ALU/adder units

If we break our instructions down to operate over a series of (shorter) clock cycles, we can use
only the number of cycles we need and potentially reuse some components.

We will develop a machine that has a single memory for both data and instructions (which means
we will need to access it more than once per instruction sometimes), and a single ALU (which will
need to compute more than one thing during an instruction sometimes).

We will go through a similar refinement process for a multicycle machine that we did for the single
cycle machine.

The basic data path is shown in Figure 5.26 of P&H.

• Here we see that there is just the one memory and one ALU

• Several registers (that are not part of the ISA and hence not visible to a programmer) have
been added that will store values that will no longer be readily available when we need them

– An instruction register (IR) that gets loaded from memory with the currently-executing
instruction

– A memory data register that holds non-instruction values that have been read from
memory

– Registers A and B that hold values read from the register file that are to be used as ALU
inputs

– A register to hold the result of the ALU

• The ALU now needs to be able to add values from a register or thePC to a value from a
register or the constant 4 (when computing PC+4), or theaddress field from the instruction
(when computing an effective address forlw or sw) or the shifted value of theaddress
field (for a branch)

In Figure 5.27, the needed control inputs are added.

• Some control lines remain from our previous design:MemRead, MemWrite, MemtoReg,
ALUOp, RegWrite, RegDst

• Some new ones:

– IorD: are we loading an instruction (using the PC as an address) ordata (using the
ALU output as an address)

– IRWrite: when to copy in the memory data output to the IR

– ALUSrcA: is the first ALU input coming from a register via the A register or the PC

8

CS 324 Computer Architecture Fall 2007

– ALUSrcB: is the second ALU input coming from a register via the B register, the
constant, 4, the sign-extended rawaddress field from the instruction, or that value
shifted left by 2 (2 bits needed for this control)

Figure 5.28 shows the needed control lines (including jumps).

• The main control at the top takes theopcode part of the instruction as input

• Note that thej instruction is supported here, by the extra Mux that selectsthe next PC value
among the current ALU result, an ALU result stored in ALUOut,or the jump address taken
from aj instruction

Control for Multicycle Execution

Unlike the single cycle implementation, we need to turn on and off control lines in sequence during
the execution of an instruction.

Idea: break down the instruction into substeps, each of which can be done in a clock cycle.

• Substeps should be as close as possible to each other in termsof time required – the longest
will determine how fast the clock can run

• a substep is restricted to a single memory access, register file access, or ALU operation (zero
or one of each) – to keep things fast

• there is no harm in using more than one of these components in asubset – they can operate
in parallel!

• edge-triggered methodology – we capture results of ALU operations, register file access, and
memory accesses into internal registers to be used in subsequent phases

We break down the execution into these subphases. Each instruction uses 3 to 5 of these subphases.

1. Instruction fetch :

IR <= Memory[PC];
PC <= PC + 4;

Read the<= as “gets” – theIR gets the result of accessing memory at the location specified
by thePC.

So in this subphase, we need to

• setMemRead to 1 to read memory

9

CS 324 Computer Architecture Fall 2007

• setIRWrite to 1 to capture this into theIR

• setIorD to 0 to take the memory address from thePC

• setALUSrcA to 0 to pass thePC as an ALU input

• setALUSrcB to 01 to pass the constant 4 as an ALU input

• setALUop to 00 to make the ALU perform addition

• setPCSource to 00 to pass thePC+4 value back to thePC

• setPCWrite to 1 to copy this value back into thePC

That’s a lot of work, but no component is being used more than once.

One concern might be that thePC gets rewritten too soon – we need to make sure theIR has
been loaded, but that will be the case since the same edge trigger will copy the value from
memory into theIR and the updatedPC into thePC.

Another concern might be that thePC gets loaded withPC+4 before we have a chance to
determine that the instruction might bebeq or j. In those cases, we will subsequently
overwrite thePC before this subphase comes around again and thePC is used to load theIR
with the next instruction.

2. Instruction decode and register fetch:

A <= Reg[IR[25:21]];
B <= Reg[IR[20:16]];
ALUOut <= PC + (sign-extend (IR[15:0]) << 2);

Here, we continue operations that either need to or can happen (without ill effect), regardless
of the instruction.

Many instructions need to use subfieldsrs andrt to select values from the registers, so we
retrieve those into our internal registersA andB.

The final part is the computation of a potential branch targetaddress, which we may or may
not need. However, the ALU isn’t doing anything else yet in this subphase, so we will use it
to compute this “just in case”.

Here, our control needs to:

• setALUSrcA to 0, sendingPC as the first ALU input

• setALUSrcB to 11, sending the sign-extended and shiftedoffset field to the second
ALU input

• setALUop to 00 to request addition

Everything else happens anyway!

• A andB are unconditionally loaded from the register file on every subcycle

• ALUOut is loaded with the result of the ALU on every subcycle

10

CS 324 Computer Architecture Fall 2007

3. Execute ALU op/compute effective address/complete branch

Here, we finally do things that depend on the instruction being executed.

There are four possibilities:

Memory In this case, we simply want to compute the effective address:

ALUOut <= A + sign-extend (IR[15:0]);

A already contains the value from the register specified byrs. So we add that to the
sign-extended offset from theIR.

The control specification:

• setALUSrcA to 1, sendingA as the first input

• setALUSrcB to 10, sending the sign-extendedoffset bits as the second ALU
input

• setALUOp to 00 to request addition

Our next step here will be to access memory, but we can’t do that until the next cycle
since we will not have the effective address inALUOut until the end of this cycle.

R-type For R-format instructions, we are set to perform the requested ALU operation:

ALUOut <= A op B;

A andB have the values from the appropriate registers after cycle 2. We now combine
them according to the operation specified by thefunct field of the instruction.

We can imagine taking this result and writing it directly back to the register file in this
cycle, but that would require too much time and would slow down other operations. So
we just capture the ALU result inALUOut to be stored in our next cycle.

The control specification:

• setALUSrcA to 1, sendingA as the first input

• setALUSrcB to 00, sendingB as the second ALU input

• setALUOp to 10 to use thefunct field to select the correct ALU operation

Branch For a branch instruction, we just computed a potential branch target and stored it in
ALUOut. Now we need to do the comparison to decide if this should be stored in the
PC.

if (A == B) PC <= ALUOut;

To accomplish this, we subtract to set theZero flag of the ALU. If Zero is set, we
want to copyALUOut into thePC.

The control specification:

• setALUSrcA to 1, sendingA as the first input

• setALUSrcB to 00, sendingB as the second ALU input

• setALUOp to 01 to request subtraction

11

CS 324 Computer Architecture Fall 2007

• setPCSource to 01 to send the contents ofALUOut as an input value to thePC
register

• setPCCondWrite to 1 which will cause thePC to be updated with the value from
its input only ifZero is set by the ALU

Note thatALUOut will be updated to contain the new ALU result, overwriting our
branch target. This is fine, though, since that value will be copied out into thePC “just
in time” before it gets overwritten. The timing is crucial here.

This completes the branch instruction (in 3 cycles). We can go back to step 1 and fetch
the next instruction.

Jump If the instruction is a branch, we can also wrap it up on this cycle.

PC <= { PC[31:28], IR[25:0], 00) };

This is just a way to say that the new value of thePC is constructed using the top 4
bits of the oldPC, followed by the 26 bits of the jump instruction that form thetarget,
followed by 2 0 bits.

The control specification here is very simple:

• setPCSource to 10 to select the 32-bit value constructed as above (by wired
connections)

• setPCWrite to 1 to copy in this new value to thePC

The jump is done, and we can go back to step 1 on the next cycle.

4. Access memory/write back ALU result

Both memory access and R-format instructions will require this step.

R-type For R-format instructions, the previous phase computed the result and stored it in
ALUOut. We now need only copy it back into the appropriate destination register.

Reg[IR[15:11]] <= ALUOut;

The control to accomplish this:

• setRegDst to 1 to use therd field to sety the write register number

• setMemToReg to 0 to place the value ofALUOut onto the data input of the register
file

• setRegWrite to copy the value from the data input into the selected write register

Our R-type instruction is complete, and we can continue with the instruction fetch on
the next cycle.

Memory Read For memory access instructions, we have computed an effective address and
stored it inALUOut, and we use this as the address input of our memory unit.

For reading, we need to capture the value from memory to be written to the register
file.

MDR <= Memory[ALUOut];

12

CS 324 Computer Architecture Fall 2007

The control:

• setIorD to 1 to pass the value inALUOut to the memory address inputs

• setMemRead to read from memory

TheMDR always captures the value from the MemData output, so we don’t need to do
anything specific there.

One note here: we might be tempted to wire the MemData output directly to the Mux
that selects the input to the Write Data input on the register file. We choose not to do
so because the register write operation would need to be delayed long enough for the
memory access to complete. Memory access is already the slowest individual operation
in our system, so we will avoid anything else in the same cyclethat cannot be done in
parallel with the memory access.

Memory Write As with the read operation, theALUOut register contains the effective ad-
dress.

Meanwhile, theB register contains the value of the source register from the register
file that we wish to store in memory. We didn’t specifically worry about this up to this
point, but that value is in fact copied from the register specified by bits 20:16 of theIR
during every cycle. So our operation is simply:

Memory[ALUOut] <= B;

The control to achieve this:

• setIorD to 1 to pass the value inALUOut to the memory address inputs

• setMemWrite to 1 to read the value fromB into memory

That’s it for memory write, and we can continue with the fetchof the next instruction.

5. Complete memory read

The only instruction that can get to this cycle is a memory read. In this case, the only work
that remains is to copy the value in theMDR into the appropriate register in the register file.

Reg[IR[20:16]] <= MDR;

To accomplish this:

• setMemtoReg to 1 to place theMDR value on the data input of the register file

• setRegDst to 0 to select therd field of this I-format instruction as the register number
to be written

• setRegWrite to 1 to copy the value into the selected register

Finally, our memory read is complete, after 5 cycles.

13

CS 324 Computer Architecture Fall 2007

Multicycle Control Strategy

P&H describes a methodology for controlling this kind of system using afinite state machine.

The idea is that we have a series ofstatesthat determine the status of the control lines at any given
time. When progressing from one cycle to the next, we follow atransitionto a new state. The new
state depends on the current state and the instruction beingexecuted.

The finite state machine we just developed for the multi-cycle architecture is in P&H Figure 5.37.

The implementation of such a system is another example of combinational logic that we can quite
easily understand.

• the datapath control outputs are a function of the current state and the instruction opcode

• the next state is also a function of the same input values

• when moving to the next clock cycle to continue execution, the next state becomes the current
state

Microprogramming
Another approach, more commonly used for more complex ISAs than MIPS, is amicropro-
grammeddesign.

While a finite state control might be reasonable for an ISA witha limited instruction set, such a
design might result in thousands of states and transitions.

Another way to think about this is to have a program that executes instructions that determine
which control lines are activated. In this case, we would have:

• A microarchitecture, that includes the data path and control like the multi-cycle MIPS im-
plementation we’ve been looking at

• A microsequencerthat runs amicroprogrammade up ofmicroinstructions

• Each microinstruction, analogous to a regular machine instruction, would do something (in
this case, provide the appropriate control signals to the microarchitecture) then move on
to the next instruction, which may be the next in sequence, ormay be at the target of a
microprogram branch

• The microprogram interprets the machine instructions to beexecuted, and executes them,
step-by-step, by asserting the correct control signals in the correct sequence

• A microprogram can be (and often is) used to implement a more complex ISA on top of a
relatively simple microarchitecture

14

CS 324 Computer Architecture Fall 2007

• There may be many ways to implement a complex ISA on a given microarchitecture, and
the overriding goal is usuallyspeed

• A well-designed microprogram will implement the ISA instructions in as few microinstruc-
tions as possible – try to exploit parallelism

• A microprogram can also be used to implement a variety of ISAson the same microarchi-
tecture

• A microprogramming environment, including amicroassemblerwould be used to generate
microinstructions from amicroassembly language

So how to we do all of this?

• Define a microinstruction format – given a microinstruction, what does it mean in terms of
the control signals

• Develop a microprogram that, when executed, implements thedesired instruction set archi-
tecture on the given microarchitecture.

One possible microcode approach is described in P&H Section5.7 on the CD.

My implementation of a microcode simulator that approximates the book’s approach is in the Lab
6 starter code.

• My microinstructions consist of several fields, as described in the fileucode.format in
the lab 6 starter

– while the microprogram for our small subset of MIPS fits in only 10 microinstructions,
I designed the microinstruction format to allow a microcodestore of 256 microinstruc-
tions

– given all of the control lines we need to manage, a 2-bit sequencing indicator, and the
8 bits for a microinstruction address, we need a total of 26 bits for a microinstruction

– the simulator uses a 32-bit value for this, but in a real machine, we’d just build a ROM
with the correct number of bits to hold microinstructions – no need to make it a power
of 2

• All control line values can be obtained directly from the appropriate bits in the current mi-
croinstruction

• The sequencing control in this case is where this approach gains its power – possibilities are:

– continue to the next microinstruction in sequence

– branch unconditionally to a new microinstruction (note: the first can be a special case
of this)

– branch conditionally based on opcode using a dispatch table

15

