Computer Science 324
M [] (Computer Architecture
_— Mount Holyoke College
MOUNT HOLYOKE COLLEGE Fa” 2007

Topic Notes: Data Paths and Microprogramming

We have spent time looking at the MIPS instruction set agchilre and building up components
from digital logic primitives. Our next goal is to see how wanause the physical devices we have
studied to construct the hardware that can execute MIPRigtgins.

A MIPS Subset Implementation

To keep things manageable, we will consider a subset of ké&aMihstructions.

1. memory access$:w, sw
2. arithmetic/logicaladd, sub, and, or, sl t

3. control flow:beq, |

The same ideas and techniques that we will use to implemisbaisic subset can be used to build
a machine to implement the entire MIPS ISA, and in fact, masti@mn ISAs.

Let’s think about what needs to be done to implement theseurtfons.

First, recall the loop that our machine will execute:

. Fetch the instruction from memory at the location indédaby the program counter

. Update the program counter to point to the next instradiidbe executed

1
2
3. Decode the instruction
4. Execute the instruction
5

.Goto1l

The first two steps are done the same way, regardless of ttradtisn we'’re going to execute.
During the decode and execution steps, the implementaéioorbes instruction-specific.

At that point, the instruction may result in a register valheng written into memory, a register
value being read from memory, two registers being set agsrpuhe ALU and the ALU result
written back to another register, or the PC possibly modifig@ conditional branch or uncondi-
tional jump.

We'll follow the basic implementation in P&H Chapter 5. Werstaith an abstract view and fill
in the details.

CS 324 Computer Architecture Fall 2007

The first view is in Figure 5.1.

Let's understand what's in this diagram:

e Functional units:

— Separate instruction and data memories: this allows thructson to be fetched and a
data value to be read or written from memory in the same iostmi cycle

— Register file: the 32 32-bit registers we saw earlier in theesten
— Program counter (PC) register
— Main ALU

— Two additional adders, one that always adds 4 to the PC (fenw¥e are simply going
to advance to the next instruction), and another that coesgutanch targets

e Data paths:

— PC gets passed to the instruction memory and to the +4 adder

— The fetched instruction is decoded and appropriate bitssan¢ to the input of the
second branch target adder (when PC offsets are part ofdtredtion), to the register
file to determine which registers are to be used by the instru¢needed by nearly all
instructions) and directly as an ALU input (for immediatedemperands)

— The result of the PC adders is sent back to update the PC
— Register file outputs are fed into the ALU and into the data nigmo

— Main ALU outputs can determine the address for a main memoegss or can be fed
back to the register file for storage

— Avalue read from the data memory may also be passed back torled & the register
file

This view is too simplistic for several reasons. In our firstimement of the original abstract
diagram, we add some multiplexers and control lines.

This refinement is shown in P&H in Figure 5.2.

What have we added in this refinement?

e Multiplexors replace the “wired or” points in the diagramhese places that two possible
inputs come together

— The MUX at the top selects which value is used to update the PC

— The MUX whose output goes to the data input of the registersilects between an
ALU result and a value read from memory

— The MUX whose output goes to the main ALU input selects betwaesecond register
to the ALU and an immediate value taken from a bit field of thetrimction

2

CS 324 Computer Architecture Fall 2007

e Control lines to determine the operation of the individuahponents

— The control structure is guided mainly by the instructioente the new communication
path from the instruction to théont r ol oval

— ThatCont r ol decodes the instruction and determines which of our funationits
are involved in this instruction and what operations thegdthi® perform

— If the instruction involves storing a value in a registee RegW i t e line is set and
the value sent to the “Data” input of the register file is stiarethe destination register

— If the instruction id w, theMenRead line is set, causing the data memory to retrieve
the value at the address computed by the ALU and sends it tdataeinput of the
register file (which also requires that the MUX selects thenmy output to be passed
to that input)

— If the instruction issw, theMemN i t e line is set, causing the value retrieved by the
source register to be written to the memory location as detsd by the output of the
main ALU

— The main ALU is always computing something, and in those sasat its result is
important, a set of control lines tell the ALU which of its fttions to compute

— Finally, if it is a branch instruction, th8r anch line is set. If the main ALU also
produced a zero result (which would cause the ALU to setdéeo line), the PC
MUX selects the value from the branch target ALU instead eft# ALU to be passed
to the PC

Building these Components

Our design consists of

1. combinational units — ALUs
2. state elements — memories and registers

3. data signals — information that is stored in memory, tegss or used as inputs and outputs
of ALUs

4. control signals — information that controls what the comabonal units are to compute,
which values should be passed through by the multiplexoyaen state elements should
assert their values as data signals (drive the bus) or uglieitevalues based on input data
signals

All of our components need to be synchronized properly taienghat inputs and outputs are
available at appropriate times.

For example, we have seen flip-flops (and registers built ttayae flip-flops) that load new values
only on the leading edge of the clock. In those cases, we reedake sure that the input is

3

CS 324 Computer Architecture Fall 2007

presented and control lines set appropriately when thekdloat controls those flip-flops goes
high.

This is sometimes easy — value is ready and available wheree# . Other times, the timing
is more subtle. Since combinational units al®ayscomputing, we need to make sure the input

values are presented and the control lines remain cormegenough for the output to be computed
and captured.

We consider subsets of the design proposed earlier.

First, the PC and instuction memory.

e Memory is usually thought of as a state element, but theungtm memory is never mod-
ified by our simple data path, so it is always producing thé&iresion value at the location
specified on the instruction address (Of course, the prognasmo get there somehow, so
there must be a write capability but we will not consider itfiow)

e The PC is just a single register. It can always be writing #lsig to the instruction address
input, and should read a new value at the end of the instruettecute cycle, once we have
computed the new PC value

e The adders are combinational units along the lines of th@seonstructed. One is hardwired
to add 4 (and could be replaced with a simpler circuit thaipple-carry adder if we wanted
to save some gates and delay — remember your lab problem).

Next, we consider the implementation of R-format instrutsio
op $t1, $t2, $t3

This will write a value to registe$t 1 as a result of applying the specified operatiorfsor2 and
$t 3.

Thus, we need our register file to be able to produce two oulpiat values and receive one input
data value.

We also need to be able to determine which of the 32 regist¢oslie used to each operand. This
information comes directly from the bits of the instructibiat specify the two source registers(
andr t) and the destination registard).

To achieve this, we can first decode those 5-bit values usiagpa32 decoders, calling the decoded
signalsr sg, r sy, ...rSs;, rto,rtq,...rts,rdo, rdy, ...rds.

We can then implement each regisi@as a 32-bit register:

CS 324 Computer Architecture Fall 2007

Data Input bus /
/32

mn

rdi H:_D—»CLK Register i
RegWr
/
7
e]

/

rs bus output

rsi

rt bus output

rti

That takes care of the register file.
What about the main ALU?

Appendix B on the CD with the text describes the ALU constutti We have seen just about
everything we need, so we will look at the book’s figures tolsae an ALU tailored to this MIPS
subset can be constructed.

Key ideas:

construct circuits to compute each needed input

multiplex the outputs based on an operation selection cblime set

AND and OR are trivial

we know how to build an adder/subtractor - this ALU works $arty

Also needs| t support: set on less than

— we can tell that < b if we find that(a — b) < 0

— however, the bit of the ALU that detects whether this valussigative is the high-order
(sign) bit, but we want to set the low-order bit in this case

— Appendix B shows special circuitry needed to accomplist thi

— all bits have a_ess input, which will be 0 on all but the low-order bit, where it is
connected to a copy of the sign bit

e And to supportbeq, we need to have an output that subtracts one of the registang
compared to the other, then checks if the result is zero

e The ALU has 4 control lines but only 6 meaningful combinasipas seen in Figure B.5.13.

— in this table, the first control line i&i nvert, which is only used for th&lOR func-
tionality

CS 324 Computer Architecture Fall 2007

— the second iBnegat e, used when we want subtraction (either for $he instruction
or because we need the result of a subtractiorsfdr) or NOR (where we only care
about the “invert” part of the “negate”)

— the last two control the multiplexor that selects among taguts of the AND gate,
OR gate, full adder, dcess

Implementing Remaining Instructions in our Subset

First, the load and store instructions, which are in theridat.

lw $t0, 1200($t 1)
sw $t2, 32($t1)

In either case, we need to retrieve the vahiel from the register file, and add to that the offset,
which is part of the instruction itself. We’ll use the main Blifor this. The value computed is the
effective addrestor the memory access.

We can't just take the 16 bits from the instruction and addréatly to the contents of the base
register. The offset may be negative, so we will need a sigansion unit that will copy the
contents of the high order bit of the offset into all highasbgiving us the 32-bit equivalent.

For al winstruction, we instruct the memory to retrieve the valuéhateffective address, and it
will be stored back in the register file at the destination.

For asw instruction, we need to take the value in the source registen the register file, and
present it as input to the memory and tell the memory to write.

This gives the data path shown in Figure 5.10 of P&H (whiclorgs branch and jump instruc-
tions).

For thebeq instruction, we also need to sign extend the offset valueth®n shift it left by 2
before feeding it to the branch target adder. The left sgif2 laccounts for the fact that the branch
offset is a number of words, not bytes, that must be addecetB@4 value to obtain the branch
target location.

Other than that, we need to send the two register values #ltbleto see if they are equal (which
we accomplish by testing if the difference produces a 0 tesul

The data path for this part is shown in Figure 5.9 of P&H.
If we put together everything we have seen so far, we get tteepieh of Figure 5.11 of P&H.

This handles all of our instructions excgpt

Adding Control
Now we want to add the details of the control to the data path.

First, we consider the ALU. We saw that it has 4 control lindhen do we want to set these lines?

6

CS 324 Computer Architecture Fall 2007

This process is a familiar one for us: based on the instmajocode field and (if the opcode
indicates an R-format instruction), tlieinct field, we can compute 4 expressions (and hence
circuits) that set the ALU control lines appropriately.

Figures 5.12 and 5.13 in P&H show some details of this, but Wlenat worry about those details
at this point.

Next, we consider how the fields of the instruction are usedotustruct the rest of the needed
control signals.

A refinement is shown in Figure 5.15 of P&H.

e Our instruction memory produces the 32-bit instructionavor

e Bits 15-0 (theaddr ess field for an I-format instruction) are sent to the sign extensnit
to be used as potential input values by the ALU.

e Bits 5-0 (thef unct field for an R-format instruction) are sent to the ALU contmtbmpute
the appropriate ALU control lines.

e Bits 25-21 (the source registes) are sent to the register file to select read register 1.
e Bits 20-16 (the source registet) are sent to the register file to select read register 2.

e The write register is more complex. How, we use the t field in bits 20-16. For R-format
instructions, we use thed field in bits 15-11. An additional multiplexor and a contrivid
RegDst control which field is passed to the write register selecitqut.

e The other control lines are computed from thgcode in bits 31-26, as shown in Figure
5.17 of P&H. The details of the conversion of tbpcode are just combinational logic,
which again, we can figure out (or look up in the text).

P&H has a series of figures (5.19, 5.20, and 5.21) that showdaml type of instruction uses this
data path.

Adding Jump

The final refinement is to add the data path and control to imefe the instruction, as seen in
Figure 5.24.

Using Multiple Cycles to Implement Instructions

The design we've been studying is a “single-cycle” impletaan — meaning that one clock cycle
results in one instruction being executed.

This is not used in real life, mainly because of the inefficien

e Every instruction takes the same amount of time — we don’terth& common case fast

7

CS 324 Computer Architecture Fall 2007

¢ We have redundant elements: the two memory systems, neuipU/adder units

If we break our instructions down to operate over a serieslobrter) clock cycles, we can use
only the number of cycles we need and potentially reuse samganents.

We will develop a machine that has a single memory for both datl instructions (which means
we will need to access it more than once per instruction somes), and a single ALU (which will
need to compute more than one thing during an instructioretoms).

We will go through a similar refinement process for a multieyoachine that we did for the single
cycle machine.

The basic data path is shown in Figure 5.26 of P&H.

e Here we see that there is just the one memory and one ALU

e Several registers (that are not part of the ISA and henceisiier to a programmer) have
been added that will store values that will no longer be gadiailable when we need them

— An instruction register (IR) that gets loaded from memoryhwiite currently-executing
instruction

— A memory data register that holds non-instruction valued tlave been read from
memory

— Registers A and B that hold values read from the register fiedte to be used as ALU
inputs

— Aregister to hold the result of the ALU

e The ALU now needs to be able to add values from a register oPé¢o a value from a
register or the constant 4 (when computing PC+4), oathdr ess field from the instruction
(when computing an effective address faw or sw) or the shifted value of thaddr ess
field (for a branch)

In Figure 5.27, the needed control inputs are added.
e Some control lines remain from our previous desiyanmRead, MenWW i t e, Ment oReg,
ALUOp, RegW i t e, RegDst
e Some new ones:

— | or D: are we loading an instruction (using the PC as an addressatar(using the
ALU output as an address)

— | RW it e: when to copy in the memory data output to the IR
— ALUSr cA: is the first ALU input coming from a register via the A registe the PC

CS 324 Computer Architecture Fall 2007

— ALUSr cB: is the second ALU input coming from a register via the B reggisthe
constant, 4, the sign-extended rawdr ess field from the instruction, or that value
shifted left by 2 (2 bits needed for this control)

Figure 5.28 shows the needed control lines (including jymps

e The main control at the top takes thpcode part of the instruction as input

e Note that thg instruction is supported here, by the extra Mux that sekbet:miext PC value
among the current ALU result, an ALU result stored in ALUGatthe jump address taken
from aj instruction

Control for Multicycle Execution

Unlike the single cycle implementation, we need to turn ash@fficontrol lines in sequence during
the execution of an instruction.

Idea: break down the instruction into substeps, each oflwtam be done in a clock cycle.

e Substeps should be as close as possible to each other indktimg required — the longest
will determine how fast the clock can run

e asubstep is restricted to a single memory access, reglstac@ess, or ALU operation (zero
or one of each) — to keep things fast

e there is no harm in using more than one of these componentsubset — they can operate
in parallel!

e edge-triggered methodology — we capture results of ALU aip@ns, register file access, and
memory accesses into internal registers to be used in sudseghases

We break down the execution into these subphases. Eachatistr uses 3 to 5 of these subphases.

1. Instruction fetch:

| R <= Menory[PC];
PC <= PC + 4;

Read the<= as “gets” — thd R gets the result of accessing memory at the location specified
by thePC.

So in this subphase, we need to

e setMenRead to 1 to read memory

CS 324 Computer Architecture Fall 2007

e setl RWi t e to 1 to capture this into theR

e setl or Dto O to take the memory address from #@

e setALUSr cAto 0 to pass th€Cas an ALU input

e setALUSr cBto 01 to pass the constant 4 as an ALU input
e setALUop to 00 to make the ALU perform addition

e setPCSour ce to 00 to pass th@C+4 value back to théC

e setPCW i t e to 1 to copy this value back into tHeC

That'’s a lot of work, but no component is being used more thrareo

One concern might be that tiRE€ gets rewritten too soon —we need to make suré RRbas
been loaded, but that will be the case since the same edgertngll copy the value from
memory into thd Rand the updateBC into thePC.

Another concern might be that tiC gets loaded witiPC+4 before we have a chance to
determine that the instruction might lbeeq or j . In those cases, we will subsequently
overwrite thePC before this subphase comes around again anB@hs used to load theR
with the next instruction.

2. Instruction decode and register fetch

A <= Reg[I R 25:21]];
B <= Reg[| R[20:16]];
ALUQUt <= PC + (sign-extend (IR 15:0]) << 2);

Here, we continue operations that either need to or can ing@ptnout ill effect), regardless
of the instruction.

Many instructions need to use subfiefdsandr t to select values from the registers, so we
retrieve those into our internal registé&sndB.

The final part is the computation of a potential branch taagleiress, which we may or may
not need. However, the ALU isn’t doing anything else yet iis Bubphase, so we will use it
to compute this “just in case”.

Here, our control needs to:

e setALUSr cAto 0, sendindg”C as the first ALU input

e setALUSr cBto 11, sending the sign-extended and shitiédi set field to the second
ALU input

e setALUop to 00 to request addition
Everything else happens anyway!

e A andB are unconditionally loaded from the register file on eveitycyale
e ALUQut is loaded with the result of the ALU on every subcycle

10

CS 324 Computer Architecture Fall 2007

3. Execute ALU op/compute effective address/complete branch
Here, we finally do things that depend on the instruction ¢peixecuted.

There are four possibilities:
Memory In this case, we simply want to compute the effective address
ALUQut <= A + sign-extend (IR 15:0]);

A already contains the value from the register specified $y So we add that to the
sign-extended offset from tHeR.

The control specification:

e setALUSr cAto 1, sendincA as the first input

e setALUSr cB to 10, sending the sign-extendetif set bits as the second ALU
input

e setALUQp to 00 to request addition

Our next step here will be to access memory, but we can’t douthie the next cycle
since we will not have the effective addres®iinUQut until the end of this cycle.

R-type For R-format instructions, we are set to perform the requeatd) operation:
ALUCQUt <= A op B;

A andB have the values from the appropriate registers after cycle2now combine
them according to the operation specified byftiiact field of the instruction.

We can imagine taking this result and writing it directly k&o the register file in this
cycle, but that would require too much time and would slow d@ther operations. So
we just capture the ALU result iIALUQut to be stored in our next cycle.

The control specification:
e setALUSr cAto 1, sendingA as the first input
e setALUSr cBto 00, sendind as the second ALU input
e setALUQp to 10 to use thé unct field to select the correct ALU operation

Branch For a branch instruction, we just computed a potential braaget and stored it in
ALUQut . Now we need to do the comparison to decide if this should dxedtin the

PC.
if (A== B) PC <= ALUQut;

To accomplish this, we subtract to set ter o flag of the ALU. If Zer o is set, we
want to copyALUCut into thePC.
The control specification:

e setALUSr cAto 1, sendincA as the first input

e setALUSr cBto 00, sendind as the second ALU input

e setALUQp to 01 to request subtraction

11

CS 324 Computer Architecture Fall 2007

e setPCSour ce to 01 to send the contents AL UQut as an input value to theC
register

e setPCCondW i t e to 1 which will cause th®Cto be updated with the value from
its input only if Zer o is set by the ALU

Note thatALUQut will be updated to contain the new ALU result, overwritingrou
branch target. This is fine, though, since that value will tygied out into thd>C “just
in time” before it gets overwritten. The timing is crucialrbe

This completes the branch instruction (in 3 cycles). We aahark to step 1 and fetch
the next instruction.

Jump If the instruction is a branch, we can also wrap it up on thdey
PC <= { PC[31:28], IR 25:0], 00) };

This is just a way to say that the new value of ®@ is constructed using the top 4
bits of the oldPC, followed by the 26 bits of the jump instruction that form tlaeget,
followed by 2 0 bits.

The control specification here is very simple:

e setPCSour ce to 10 to select the 32-bit value constructed as above (bydwire
connections)

e setPCW i t e to 1 to copy in this new value to tHeC
The jump is done, and we can go back to step 1 on the next cycle.

4. Access memory/write back ALU result
Both memory access and R-format instructions will requirs step.

R-type For R-format instructions, the previous phase computeddheltrand stored it in
ALUQut . We now need only copy it back into the appropriate destmategister.

Reg[| R[15: 11]] <= ALUQut;

The control to accomplish this:

e setRegDst to 1 to use the d field to sety the write register number

e setMenToReg to 0 to place the value &L UQuUt onto the data input of the register
file

e setRegW i t e to copy the value from the data input into the selected weitgster

Our R-type instruction is complete, and we can continue withihstruction fetch on
the next cycle.

Memory Read For memory access instructions, we have computed an e#edidress and
stored it iInALUQut , and we use this as the address input of our memory unit.

For reading, we need to capture the value from memory to bieenrio the register
file.

MDR <= Menory[ALUCut | ;

12

CS 324

Computer Architecture Fall 2007

The control:

e setl or Dto 1 to pass the value IRLUQuUt to the memory address inputs
e setMenRead to read from memory

The VDR always captures the value from the MemData output, so wet deed to do
anything specific there.

One note here: we might be tempted to wire the MemData ouipetity to the Mux
that selects the input to the Write Data input on the registier We choose not to do
S0 because the register write operation would need to bgeatklang enough for the
memory access to complete. Memory access is already thestiovdividual operation
in our system, so we will avoid anything else in the same cife¢ cannot be done in
parallel with the memory access.

Memory Write As with the read operation, thii_UQut register contains the effective ad-

dress.

Meanwhile, theB register contains the value of the source register from ¢ester
file that we wish to store in memory. We didn’t specifically woabout this up to this
point, but that value is in fact copied from the register $jest by bits 20:16 of thé R
during every cycle. So our operation is simply:

Menory[ALUQuUt] <= B;

The control to achieve this:

e setl or Dto 1 to pass the value iIRLUQuUt to the memory address inputs
e setMemN i t e to 1 to read the value from into memory

That’s it for memory write, and we can continue with the fedélthe next instruction.

5. Complete memory read

The only instruction that can get to this cycle is a memorylréda this case, the only work
that remains is to copy the value in tNBRinto the appropriate register in the register file.

Reg[| R[20: 16]] <= MDR;

To accomplish this:

e setMent oReg to 1 to place thé&/DR value on the data input of the register file
e setRegDst to O to select thed field of this I-format instruction as the register number

to be written

e setRegW i t e to 1 to copy the value into the selected register

Finally, our memory read is complete, after 5 cycles.

13

CS 324 Computer Architecture Fall 2007

Multicycle Control Strategy
P&H describes a methodology for controlling this kind ofteys using dinite state machine

The idea is that we have a seriestdtesthat determine the status of the control lines at any given
time. When progressing from one cycle to the next, we folldvaasitionto a new state. The new
state depends on the current state and the instruction brétyited.

The finite state machine we just developed for the multi€yethitecture is in P&H Figure 5.37.

The implementation of such a system is another example obcwtional logic that we can quite
easily understand.

¢ the datapath control outputs are a function of the curreé $tnd the instruction opcode

¢ the next state is also a function of the same input values

e when moving to the next clock cycle to continue executioe ftext state becomes the current
state

Microprogramming

Another approach, more commonly used for more complex I$%&s tMIPS, is amicropro-
grammedlesign.

While a finite state control might be reasonable for an ISA witiimited instruction set, such a
design might result in thousands of states and transitions.

Another way to think about this is to have a program that etescinstructions that determine
which control lines are activated. In this case, we woulcehav

A microarchitecture that includes the data path and control like the multi-eydIPS im-
plementation we've been looking at

e A microsequencethat runs amicroprogrammade up ofnicroinstructions

e Each microinstruction, analogous to a regular machineunsbn, would do something (in
this case, provide the appropriate control signals to theoarchitecture) then move on
to the next instruction, which may be the next in sequencenay be at the target of a
microprogram branch

e The microprogram interprets the machine instructions t@lexuted, and executes them,
step-by-step, by asserting the correct control signalsercorrect sequence

e A microprogram can be (and often is) used to implement a mongptex ISA on top of a
relatively simple microarchitecture

14

CS 324 Computer Architecture Fall 2007

e There may be many ways to implement a complex ISA on a givemoaichitecture, and
the overriding goal is usuallypeed

o A well-designed microprogram will implement the ISA insttions in as few microinstruc-
tions as possible — try to exploit parallelism

e A microprogram can also be used to implement a variety of I8\¢he same microarchi-
tecture

e A microprogramming environment, includingnaicroassemblewould be used to generate
microinstructions from anicroassembly language

So how to we do all of this?

e Define a microinstruction format — given a microinstructiarmat does it mean in terms of
the control signals

e Develop a microprogram that, when executed, implementdéleed instruction set archi-
tecture on the given microarchitecture.

One possible microcode approach is described in P&H Sebtibon the CD.

My implementation of a microcode simulator that approxiesathe book’s approach is in the Lab
6 starter code.

e My microinstructions consist of several fields, as desctiibethe fileucode. f or mat in
the lab 6 starter

— while the microprogram for our small subset of MIPS fits inyohD microinstructions,
| designed the microinstruction format to allow a microcstiwe of 256 microinstruc-
tions

— given all of the control lines we need to manage, a 2-bit segug indicator, and the
8 bits for a microinstruction address, we need a total of &6fbi a microinstruction

— the simulator uses a 32-bit value for this, but in a real mashive’'d just build a ROM
with the correct number of bits to hold microinstructionse-eed to make it a power
of 2

¢ All control line values can be obtained directly from the egpiate bits in the current mi-
croinstruction

e The sequencing control in this case is where this approaaol da power — possibilities are:

— continue to the next microinstruction in sequence

— branch unconditionally to a new microinstruction (notee flist can be a special case
of this)

— branch conditionally based on opcode using a dispatch table

15

