
Ars Technica: Linux.Ars (12/24/2003) http://www.arstechnica.com/etc/linux/index.html

1 of 9 12/25/03 10:22 PM

Subscribe to Ars
Technica!

Have news? Send it in.

Serving the PC enthusiast for over 5x10-2 centuries

 Buyer's Guide
 How-To's & Tweaks
 Product Reviews
 Ars Shopping Engine

 Technical Blackpapers
 CPU Theory & Praxis
 Ars OpenForum
 Search Ars

 Wankerdesk
 AskArs!
 Diary of a Geek
 Game.Ars Report
 Mac.Ars takes on...
 Linux.Ars

 Subscribe to Ars
 Ars Merchandise
 Who We Ars
 Advertising
 Links

 by Charles "ctkrohn" Krohn

 12/24/2003 Edition

Welcome to this week's edition of Linux.Ars. Today we
feature a detailed description of one of the most
important parts of the newly-released Linux 2.6

JNCS Motherboard Bundles - Motherboard, CPU, Memory, Fan,
Assembly, and Test.
Shuttle SS51G Intel D875PBZLK Asus P4C800e

Shuttle SB61G2 Intel D865PERLK Asus P4P800d

Ars Technica: Linux.Ars (12/24/2003) http://www.arstechnica.com/etc/linux/index.html

2 of 9 12/25/03 10:22 PM

kernel: the scheduler. The new scheduler features
several improvements over that in 2.4; we will not
only explain the improvements, but also describe how
the scheduler works and why these improvements are
important. The excellent media player Zinf is our Cool
App of the Week: its music browser offers an
alternative to the iTunes method of organizing one's
music.

Inside the Linux 2.6 Scheduler

At long last, the 2.6 kernel is finished. The Christmas
holiday gives us plenty of free time to play with its
new features. The list of changes is quite long; very
much work has been done on this new kernel. One of
the most important and visible changes it the
introduction of the O(1) scheduler. The scheduler is
the piece of the kernel which allocates slices of time
to individual programs running on the computer. It
makes it possible for one CPU to execute multiple
programs at once by allowing one program to run for a
certain amount of time, then switching to another
program, allowing it to run for another amount of
time, and so forth. As such, a good scheduler which
allocates CPU time efficiently can lead to a much more
responsive user experience.

What the heck is O(1) anyway?

"O(1)" is an example of "Big-Oh" notation, a notation
used in computer science to describe the running time
of an algorithm. An algorithms is a well-defined,
step-by-step method for accomplishing a specific
computational task. Big-Oh notation does not actually
measure the number of milliseconds that an algorithm
takes to execute; such a measure is highly dependent
on the machine specifications, operating system, etc.
Rather, it measures how long an algorithm takes in
proportion to the size of the input. For example, the
insertion sort algorithm is O(n2), meaning that the
time it takes to sort a list of items is proportional to
the square of the size of the input.

It is easy to recognize the input of most algorithms.
For example, the input to the insertion sort algorithm
is a list of items. Scheduling algorithms pick a task to
execute and decide how much time to allocate it; their
input is the set of tasks that the operating system is
dealing with. When we say that the scheduler is O(1),
we mean that it takes a constant amount of time to
execute, independent of the number of tasks. Whether

IBM ThinkPad T40

review

ViewSonic airpanel

V150p review

Adobe InDesign CS

review

Compaq Evo N620c

laptop review

Mac OS X 10.3 — the

definitive review

Dealing with

PlayStation 2 disc

read errors

iTMS: Facing New

Challenges

Quickeys X2 for OS X

PowerPC & Intel 64-bit

compiler update

GNOME 2.4 Desktop &

Developer Platform

Macintosh Browser

Smackdown

Best anti-spam

solutions for Windows

Antec Sonata Case: a

quiet wonder

Digital Video Cleaning

without the Elbow

Grease

Ars for Five Years

/etc
OpenForum

Distributed Computing

Take the Poll Technica

FAQ: Celeron

overclocking

Ars Technica: Linux.Ars (12/24/2003) http://www.arstechnica.com/etc/linux/index.html

3 of 9 12/25/03 10:22 PM

your computer is executing 1000 tasks simultaneously
or 10, the scheduler will always take the same amount
of time to pick the next task. This is a very desirable
characteristic for a scheduler.

Schedulers and the processes they schedule

To understand how the scheduler allocates CPU time
and manages program execution, it is necessary to
understand the concept of a "process." A process is a
set of instructions that the processor executes
sequentially. One or more processes can make up a
program.

Processes can have one of five states: running,
interruptible, uninterruptible, zombie, or stopped. In
this article, we will only consider the running and
interruptible states. A process in the running state is
either currently being executed by the processor, or
stored in memory awaiting execution. An interruptible
process is one that is currently "blocking." Blocking
occurs when a process voluntarily yields control of the
CPU until a certain condition is met. This typically
occurs when a process is waiting for input from the
user, hard disk, network, or other external resource.

The Linux 2.6 scheduler

by Amir Elaguizy and Jim "Spamizbad" Battin

Processes can have various priority levels. The Linux
2.6 scheduler uses an efficient algorithm to favor
higher-priority processes while still allowing
lower-priority processes to execute. The scheduler
keeps a list of the priority levels. When it comes time
to select a process, the scheduler finds the highest
priority level containing available processes. It then
selects a process from the desired priority level.
Because the number of priority levels is fixed, the
scheduler always takes a constant amount of time.

The scheduler has another important ability:
preemption. Preemption enables a process to be
stopped at any time, allowing a higher-priority process
to be started. This is very important from a user's
point of view; it allows processes which interact with
the user to be executed whenever necessary, while
allowing lower-priority process which do not interact
with the user to run in the background. For example,
imagine you are running a distributed computing
client. This program uses the majority of your CPU
time when you are not in front of your computer. The

Ars Technica: Linux.Ars (12/24/2003) http://www.arstechnica.com/etc/linux/index.html

4 of 9 12/25/03 10:22 PM

minute you begin using a program such as a web
browser, the web browser "preempts" the distributed
computing client. Your system will not appear sluggish,
even though you have a computationally-intensive
process working in the background.

The benefits of preemption are great enough that the
kernel developers decided to make the kernel itself
preemptible. This allows a kernel task such as disk I/O
to be preempted, for instance, by a keyboard event.
This allows the system to be more responsive to the
user's demands. The 2.6 kernel is able to efficiently
manage its own tasks in addition to user processes.

Runqueues and load balancing

Linux 2.6 is able to efficiently manage more
processors than Linux 2.4, the previous stable version.
The ability to deal with different amounts of
computational resources, from small embedded CPUs
to massive 64-processor supercomputers, is called
"scaling;" it is one of the new kernel's many
strengths. One might think that a scheduler designed
to manage one CPU could never be adapted to
managing 64 CPUs; however, the Linux 2.6 scheduler
can manage large multiprocessor systems through the
use of special lists called "runqueues." A runqueue
stores information about the processes running on a
single CPU; there is one runqueue for each CPU in the
system. The information contained in the runqueues
allows the processor to seamlessly transfer control
from one CPU to another, using a method called "load
balancing."

Load balancing is a way to ensure that no CPU's
resources are going to waste while another CPU is
overstressed. If the scheduler finds that one runqueue
has many more processes in it than another, one or
more processes may be moved from the larger
runqueue to the smaller one. The load balancer is
invoked whenever a runqueue is empty; if no
runqueues are empty it is invoked periodically. The
periodic timer allows the system to maintain a
reasonable load balance across many CPUs without
devoting too much time to moving processes from one
CPU to another. Balancing the load whenever a
runqueue is empty allows the scheduler to ensure that
precious CPU power never goes to waste. There is one
exception to this load balancing rule — some special
processes may be fixed to a certain runqueue. This
attribute is called "thread affinity;" a thread is simply

Ars Technica: Linux.Ars (12/24/2003) http://www.arstechnica.com/etc/linux/index.html

5 of 9 12/25/03 10:22 PM

another name for a process.

It is important to note that if SMP (symmetric
multiprocessing) support is not enabled when one
compiles the kernel, none of the load-balancing code
will be enabled and no time is wasted trying to
balance the load on a single CPU.

Timeslices and niceness

You may be wondering how much time the scheduler
allocates to each process. The amount of CPU time
which the scheduler assigns to a particular process is
called a "timeslice." After a process' timeslice is used
up, the process is stopped so the next process can
execute. It is important to remember that a process
can be stopped in the middle of its timeslice; this is
the purpose of preemption. Different processes are
assigned different timeslices based on priority;
higher-priority processes run for longer than
lower-priority ones. Priority is not a unitary concept;
each process has static priority and dynamic priority.

Static priority, or "niceness" in traditional UNIX
terminology, is a measure of how important a process
is. It can be set by the user or by other programs.
Processes with a low nice value are granted longer
timeslices; those with high nice values are granted
smaller ones. Nice values range from -20 to +19. The
fact that high-priority processes have low nice values
may seem confusing if one views niceness as a
measure of priority; rather, think of niceness as a
measure of how willing the processes is to yield to
others. Nice values can be set on the command line
with the "nice" command, or through some system
monitor programs. The November 5 Linux.Ars has a
good introduction to managing processes with such
tools.

The dynamic priority of a process is determined by the
scheduler by monitoring its behavior during execution.
Processes which spend much of their time blocking are
known as "I/O bound" processes; their behavior is
bound by input and output. When the scheduler
recognizes an I/O-bound process, it is granted a
negative bonus (down to -5), and thus a larger
timeslice. By contrast, CPU-bound processes are
granted a positive bonus (up to +5), thus a smaller
timeslice. This prevents CPU-bound processes from
controlling the processor, and allows input and output
to proceed smoothly. Often, a single process may
switch between I/O-bound and CPU-bound behavior.

Ars Technica: Linux.Ars (12/24/2003) http://www.arstechnica.com/etc/linux/index.html

6 of 9 12/25/03 10:22 PM

For example, a process might read some information
from the keyboard, and then perform some
computations based on that input. The scheduler needs
to constantly be aware of a process's behavior;
dynamic priorities may then be readjusted accordingly.

The scheduler keeps track of all these timeslices with
two lists of processes. The first list contains processes
that have yet to use their timeslice; the second
contains those processes which have used their time.
When a process uses its timeslice, the scheduler
calculates a new timeslice by adding the dynamic
priority bonus to the static priority. The process then
gets inserted in the second list. When the first list
becomes empty, the second list takes the place of the
first, and vice-versa. This allows the scheduler to
continuously calculate timeslices with minimal
computational overhead.

Why must the scheduler be so careful when calculating
timeslices? A good scheduler must achieve a proper
balance between throughput and latency. Throughput is
the amount of data that can be transferred from one
location to another. Latency is the time it takes for a
process to respond to input. This balance is achieved
by adjusting timeslices. An I/O-bound process needs
good throughput if it is to accomplish its tasks quickly.
This is why the scheduler gives I/O-bound processes
large timeslices; they have make and respond to I/O
requests, and don't have to wait as long for other
processes to execute. Because nearly all processes can
benefit from superior throughput, why not give all
processes a large timeslice? If a scheduler were to do
this, latency would suffer. Because each process has a
long time to complete its task, other processes won't
be able to respond quickly to user input. A good
balance between throughput and latency leads to a
responsive user experience with sufficient throughput.

Conclusion

The Linux 2.6 kernel provides a powerful foundation
for the newest Linux distributions, programs, and
devices. An immense effort was put into the design
and testing of this new release; this effort was so
great that many people thought that the kernel should
be numbered 3.0 rather than 2.6. Developers such as
Ingo Molnar, Robert Love, Con Kolivas, David Libenzi,
and Linus Torvalds, in addition to thousands of other
developers and testers, have brought us an excellent
release. There are many other important areas of the

Ars Technica: Linux.Ars (12/24/2003) http://www.arstechnica.com/etc/linux/index.html

7 of 9 12/25/03 10:22 PM

kernel which have been overhauled, such as key parts
of the I/O subsystem; sadly, these are beyond the
scope of this article. If you are interested in kernel
issues, we recommend Kerneltrap and Kernel Newbies.
More ambitious users may wish to subscribe to the
Linux Kernel Mailing List, the official medium for
kernel development conversation.

Cool app of the week: Zinf

As people continue to acquire more and more music
files, it becomes very difficult to organize them.
Simple media players such as XMMS or its GTK2 port
Beep have a single flat playlist. If one wants to find a
certain song, there are two choices: scrolling through a
list or, if feeling lucky, searching for the song by
name. The first option requires that the user know
exactly which songs are in which parts of the playlist;
the second requires that the user type text in order to
find the song. Neither solution is satisfactory for large
music collections; the ideal music player would allow
the user to select any song with a few clicks of the
mouse.

There are many programs for all major platforms that
allow users to maintain and browse large music
collections; Apple's iTunes is probably the best-known.
On Linux, two of the more popular ones are Juk for
the KDE desktop environment and Rhythmbox for
GNOME. Both these programs mimic the iTunes
interface very closely.

While some users like the iTunes/Rhythmbox
interface, I prefer a different screen layout. The music
browser interface has, in my opinion, a few flaws. The
lower pane repeats much of the information which is
displayed in the upper two panes; the upper two panes
also display much information which is not relevant to
the current playlist. A better way to design a music
browser is to use a tree view, similar to that of most
file managers. Artists would be the top-level nodes in
the tree. Click on the "expand" icon next to an artist's
name, and a list of albums would be displayed.
Expand an album, and see the songs it contains. Such
a browser does not take up a great deal of horizontal
space; instead, it makes good use of vertical space. If
placed on the left side of the screen, like the tree
views in most file managers, it could provide an
efficient way to browse one's music collection while
still leaving enough space to see the current playlist.

Ars Technica: Linux.Ars (12/24/2003) http://www.arstechnica.com/etc/linux/index.html

8 of 9 12/25/03 10:22 PM

My second complaint about the iTunes/Rhythmbox
interface is that it does not provide a quick and easy
way to see which songs are currently queued for
playing. It is possible to create a "Now Playing"
playlist and add things to it on the fly; however, one
must be constantly switching back and forth between
the Now Playling list view and the library browser
view. Because the tree view left us with extra screen
real estate, we can easily put a "Now Playing" list on
the right-hand side of the music browser window; that
way we can browse our library and manipulate the
current playlist without changing between views.

Zinf implements these two ideas effectively; its music
browser (screenshot) is a joy to use. While its music
browser is close to perfect in my opinion, there is
more to a media player than the browser. I have two
major complaints about its design. The first is that
Zinf uses an annoying two-window interface: one
window for controlling playback (with the traditional
play controls and an equalizer), and another window
for the music browser. It would be much nicer if Zinf
had an integrated design like iTunes and Rhythmbox.
The second complaint is that Zinf has a dated GTK1
user interface. Zinf has not seen any releases since
August and the development mailing list is quiet; this
makes it unlikely that it will ever be ported to GTK2.
While it lacks many modern bells and whistles like
integrated CD ripping and burning, Zinf is a relatively
mature program and does not have the stability
programs of some newer applications like Rhythmbox.
In addition, it runs well on Windows.

While RPM packages do exist for RedHat 9, they do
not work well in Fedora. If you wish to use Zinf in
Fedora, your best bet is to compile the program from
scratch. There are Debian packages in the main apt
repository. Users of other distributions may be able to
find packages; if not, it is an easy application to
compile.

/dev/random

We're always looking for interesting ideas for
articles. If you are interested in any
particular facet of Linux, whether it be the
new I/O subsystems in Linux 2.6 or advanced
package management techniques, we want to
hear about it. Post your ideas in the
discussion page for this article.

Ars Technica: Linux.Ars (12/24/2003) http://www.arstechnica.com/etc/linux/index.html

9 of 9 12/25/03 10:22 PM

Last week, we said that in this issue, "we'll
explore how to take advantage of this
flexible boot process in order to have the
computer boot off the network, without
requiring any disks at all." Unfortunately;
this article must wait until a later date.

New NVIDIA drivers were released on
December 22nd. Check it out. It's possible to
patch these drivers for use with Linux 2.6

Support was recently merged into OpenBSD
to allow two boxes to synchronize their
firewall states over a physical LAN interface.
If this is stable by the time 3.5 comes out,
OpenBSD will be very handy for deploying
redundant firewalls

Linux.Game.Ars: Bioware has announced the
availability of Linux binaries for its new
Neverwinter Nights expansion pack, "Hordes
of the Underdark." More information is
available here.

Previous editions

Revision History

Date Version Changes

12/24/2003 1.0 Release

Discuss this article

Back to Ars Technica

Copyright © 1998-2003 Ars Technica, LLC

