
Computer Science 322
Operating Systems
Mount Holyoke College
Spring 2008

Topic Notes: Processes and Threads

What is a process? Our text defines it as “an abstraction of a running program.”

Definitions from other textbooks:

• A program in execution (good one)

• An asynchronous activity

• the “locus of control” of a program in execution

• that which is manifest by the existence of a process control block in the OS

• that entity which is assigned to processors

• the “dispatchable” unit

• the “animated spirit” of a procedure

A process is sequential.

Parts of a process:

• program code (text section)

• program counter and other registers

• stack (local variables and function call information)

• data (global variables)

A typical multiprogrammed system has many processes at any time. Tryps -aux or ps -ef
to see the processes on your favorite Unix system. Only one ofthese can be on the processor at a
time.

So if a process is in the system but not executing on the CPU, where is it?

States of a process:

new

ready

terminated

running

waiting

creation
preemption

dispatch

I/O event
I/O completion

exit

CS 322 Operating Systems Spring 2008

What information do we need to let a process transition among these states?

Think about it in terms of what a person needs to do to get back to what he or she was doing before
being interrupted.

• you’re sitting in the lab working hard on your OS project and someone interrupts you

• your attention shifts and you go off and do something else fora while

• then when you need to come back to the work, you need to remember what you were doing,
andwhere you were in the process of doing it

We do this all the time, and many of us are really pretty good atit. A processor can’t just pick
up where it left off, unless we carefully remember everything it was doing when it was so rudely
interrupted.

Process Control Block (PCB) – information needed to save and restore a process.

• Process stare (running, waiting, ready)

• Process identifier (PID)

• Program counter

• Other CPU registers

• CPU scheduling information

• Memory-management information

• Accounting information

• I/O status information

In many Unix systems, the PCB is divided between two structures:

• Theproc structure, which holds the process information needed at all times, even when the
process is not active (swapped out).

• Theuser structure, which holds other information about the process.

Historically, it was important to keep as much in the user structure and as little in the proc structure
as possible, because of memory constraints. As memory has gotten larger, this has become less
important.

In FreeBSD, for example, most of the information is now in the proc structure. We can see it on
your favorite FreeBSD system in/usr/src/sys/sys/proc.h. Seestruct proc to see
the structure at line 495.

2

CS 322 Operating Systems Spring 2008

The user structure is in/usr/src/sys/sys/user.h, and it is very small. It contains per-
thread information. Part of this is astruct pcb, which is an architecture-dependent structure
defined in/usr/src/sys/i386/include/pcb.h (line 44). Here you find the actual x86
registers that need to be saved when a process is removed fromthe CPU. For comparison, check
out the Alpha version in/usr/src/sys/alpha/include.

The transition is called acontext switch. This is pure overhead, so it needs to be fast. Some systems
do it faster than others. Hardware support helps - more on that later.

This requires at least two levels of privilege, or modes of operation:

• User mode: execution of user processes. Low privilege. Can only access its own memory,
etc.

• Monitor mode (kernel mode, system mode): operating system execution. Can do things like
switch among user processes, shut down the system, etc.

Hardware support is needed. Privileged instructions can beexecuted only while in monitor mode.
We’ll talk more about this as we go forward.

Process Creation/Deletion
In Unix, every process (except for the first) is created from an existing process. Seeps again for
examples. The processes form a tree, with the root being theinit process (PID=1).

When a new process is created, what information does it inherit from or share with its parent?

• Does it get any resources that were allocated to the parent?

• Does the parent wait for the child to complete, or do they execute concurrently?

• Is the child a duplicate of the parent, or is it something completely different?

• If it’s a duplicate, how much context do they share?

• Can the parent terminate before the child?

Creation of a new process is a highly privileged operation. Itrequires the allocation of a new PCB,
insertion of this PCB into system data structures, among other operations that we would not trust
to regular “user” programs.

The typical solution to this is that such operations are provided throughsystem calls. These system
calls are functions that are part of the operating system andare permitted to perform some tasks
that a normal process is not able to do on its own. In effect, the program temporarily gains a higher
privilege level while executing the system call.

In Unix, thefork() system call duplicates a process. The child is a copy of the parent - in
execution at the same point, the statement after the return fromfork().

3

CS 322 Operating Systems Spring 2008

The return value indicates if you are child or parent.

0 is child,> 0 means parent, -1 means failure (limit reached, permission denied)

Example C program:

pid=fork();
if (pid) {

parent stuff;
}
else {

child stuff;
}

A more complete program that usesfork() along with three other system calls (wait(),
getpid(), andgetppid()) is in forking.c:

See Example:
/cluster/examples/forking

Some comments about this program:

First, we run it to observe what happens. Note that there is only one copy of the printout before the
fork(), two of the one after.fork() is a very unusual function - you call it once, but it returns
twice!

How do we know how these work? See the man pages! Thefork page tells us what we need to
include, and how to use it.

How aboutwait? If we issue the commandman wait, we get the man page forbuiltin,
as there is a built-inwait command in the shell. To get the page we want, we need to specify a
manual “section.” Section 2 is the system calls section. Thecommandman 2 wait will get us
the page we want.

Are there really two processes? Let’s look at the output ofps as the program runs.

Again, these system calls let you, as a normal user, do thingsthat only the system can really do.
Your “user mode” process can get access to “kernel mode” functionality through these calls.

How many processes can we create on various systems? Where does this limit come from? Can
we create enough processes to take down a system?

See Example:
/cluster/examples/forkbomb

If we look at theps output on a Unix system, we will see a lot of processes owned byroot. Many
of these are essential parts of the system and are intended tocontinue running as long as the system
is up. These processes are calleddaemons and are the motivation for the BSD logo.

The FreeBSD implementation offork() is in /usr/src/sys/kern/kern fork.c.

Things to note here (for an example – don’t worry about the details):

4

CS 322 Operating Systems Spring 2008

• the action is happening infork1()

• Line 271: actually allocate the new proc structure withuma zalloc, a specialmalloc
basically (seezalloc(9).

• Fill in some of the structure.

• Line 289: check if a new process is allowed based on global system limits.

• nprocs is the kernel variable that stores the number of active processes in the system.

• Line 322: find an available pid. Note thegotos.

• Line 446: initialize proc table entry

• Line 622: attach new process to parent – or to init process if acertain flag is set to say that
the parent should not wait for its child.

• Line 644: deal with some memory for the new child.

• Line 679: set on run queue, so the child can start executing.

We will see that in many cases, you will want to use thevfork(2) system call instead of
fork(). This one doesn’t copy the address space of the process – it assumes you are going
to replace the newly created process’ program with a new one.

In the Windows world, there is aCreateProcess() Win32 call (Win32 is like a POSIX for
Windows) that creates a new process and loads the correct program into that new process.

Later, we will consider more system calls, including ones that let you do things more interesting
than making a copy of yourself.

We also will consider later how all this gets started – how does that first process get started that
forks everything else?

Processes may need to communicate with each other in some more interesting way than making
copies of themselves. We will see a number of ways this can be done, but in your lab this week,
you will make use of a small chunk of POSIX shared memory.

The textbook has examples of how to create a shared memory segment that can be accessed by
your parent and child process.

Another possibility is to have processes pass messages to each other over the network or through
the file system.

We will spend a good chunk of time later this month on cooperating processes.

Once we have all of these processes, we need to manage them. Recall the process states.

Basically, each process in the system has to be in one of several queues. These areprocess schedul-
ing queues

The system maintains aprocess table and the PCBs are stored in these process scheduling queues.

5

CS 322 Operating Systems Spring 2008

The selection of a process from the ready queue to run on the CPUis the topic for our CPU
scheduling lectures.

A fundamental job of the OS is to manage these queues.

FreeBSD defines it’s run/ready queues in/usr/src/sys/kern/kern switch.c

There are actually 64 regular queues (this number is defined in/usr/src/sys/sys/runq.h).
We’ll think more about what these are about when we talk aboutCPU scheduling.

As processes go through the system, processes will be assigned to the CPU (dispatched) or removed
from the CPU dozens or even hundreds of times per second. Each of these swaps is acontext
switch, saving a CPU state in a PCB, then restoring another PCB.

Remember, the context switch is pure overhead. The system is not doing any useful computation
when it’s working on a context switch. It had better be fast.

Diagram of context switch:

6

CS 322 Operating Systems Spring 2008

FreeBSD does this in what is necessarily an architecture-dependent routine.

In fact, it’s an assembly source file, not C!/usr/src/sys/i386/i386/swtch.s

Notes about the context switch:

• Line 95: an assembly code entry point (essentially function) cpu switch.

• Line 108: save hardware registers into PCB.

• Line 144: save floating point stuff – note “big C function”

• Line ???: choose a new proc: come back next week for more

• Lots of other stuff....

• Line 253: restore PCB of new proc

• ends up returning to the new proc, picking up where it left off

Registers are just one part of a process’ context. What about memory? What about stuff in a cache?

We’ll talk about main memory around spring break. Each process in the ready/run queues has
some main memory allocated to it.

But cache is another story. Remember how a typical cache is set up. Closest to the CPU and
registers in the memory hierarchy.

As the CPU requests memory, lines of values from memory are brought into the cache. If all goes
well, these lines will be reused.

7

CS 322 Operating Systems Spring 2008

But when a context switch occurs, the things from the process that was on the CPU that are now in
cache seem unlikely to survive there until that process getsanother chance on the CPU. We may
force a lot of cache misses, adding more overhead to the context switch cost.

Threads/Lightweight Processes
Those of you who have taken or TA’ed for the “objectdraw” version of the intro class here know
about Java threads. You may have called themActiveObjects. These gave you the ability to
have your programs doing more than one thing at a time. Such a program is calledmultithreaded.

Threads are a stripped-down form of a process:

• a task or process can contain multiplethreads

• Threads share process context

• Threads are asynchronous

• Threads have less context than processes

• Threads can be created/destroyed at a lower cost than processes

• Threads cooperate to do a process in parallel with (relatively) fine granularity of parallelism

• Threads are well-suited to symmetric multiprocessors (SMPs).

Threads can be useful even in single-user multitasking systems:

• Foreground and background work: one thread to deal with userinput, another to update
display, etc such as in a spreadsheet or word processor.

• Asynchronous processing: auto-save features, backgroundcomputation.

8

CS 322 Operating Systems Spring 2008

• Speed execution: compute with one batch of data while reading another.Your process can
be in I/O and on the CPU at the same time!

• Organizing programs: cleaner and more elegant program design.

A “normal” single-thread process has its program text, global address space, a stack, and a PC.

A multithreaded process has its program text, a single shared global address space, but a stack and
a PC for each thread.

See SG&G Figure 4.1.

Each thread also needs to be able to access the registers whenit’s on the CPU, so while the context
switch among threads doesn’t have to worry about everything, it will still need to save registers.

Sample thread application: An NFS (network file system) server.

A single thread of execution would be unreasonable for all but the most lightly-loaded servers.
Realistically, a new process or thread needs to be created foreach request.

With “heavyweight” processes, each request from the network would require a heavyweight pro-
cess creation. A series of requests would result in frequent, short-duration processes being created
and destroyed. Significant overhead would result.

With multithreading, a single NFS server task (a process) can exist, and a new thread would be
created within the task for each request (“pop-up” threads). There is less overhead, plus if there
are multiple CPUs available, threads can be assigned to each for faster performance.

User Threads vs. Kernel Threads

Threads may be implemented within a process (in “user space,” also often referred to as “userland”)
or by the kernel (in “kernel space”).

With user threads, the kernel sees only the main process, andthe process itself is responsible for
the management (creation, activation, switching, destruction) of the threads.

With kernel threads, the kernel takes care of all that. The kernel schedules not just the process, but
the thread.

There are significant advantages and disadvantages to each.Some systems provide just one, some
systems, such as Solaris, provide both.

One big thing is that with user threads, it is often the case that when a user thread blocks (such as
for I/O service), the entire process blocks, even if some other threads could continue. With kernel
threads, one thread can block while others continue.

pthreads, POSIX threads

We saw how to usefork() to create threads in Unix. There is a POSIX standard interface to
create threads.

9

CS 322 Operating Systems Spring 2008

A google search for “pthread tutorial” yields many results.

Instead of creating a copy of the process likefork(), create a new thread, and that thread will
call a functionwithin the current task.

The basic pthread functions are:

Simplest form:

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void * (*start_routine)(void *),
void *arg);

int pthread_join(pthread_t thread, void **status);

void pthread_exit(void *value_ptr);

• pthread create(3THR) – Well, this creates a new thread. It takes 4 arguments. The
first is a pointer to a variable of typepthread t. Upon return, this contains a thread identi-
fier that is used later inpthread join(). The second is a pointer to apthread attr t
that specifies thread creation attributes. In the pthreadhello program, we pass inNULL, which
specifies the system default attributes. The third argumentis a pointer to a function that will
be called when the thread is started. This function must takea single parameter of type
void * and returnvoid *. The fourth parameter is the pointer that will be passed as the
argument to the thread function.

• pthread exit(3THR) – This causes the calling thread to exit. This is called implicitly
if the thread function returns. Its argument is a return status value, which can be retrieved by
pthread join().

• pthread join(3THR) – This causes the calling thread to block until the thread with
the identifier passed as the first argument topthread join() has exited. The second
argument is a pointer to a location where the return status passed topthread exit() can
be stored. In the pthreadhello program, we pass inNULL, and hence ignore the value.

Prototypes for pthread functions are inpthread.h and programs need to link withlibpthread.a
(use-lpthread at link time). When using the Sun compiler, the-mt flag should also be speci-
fied to indicate multithreaded code.

To compile under FreeBSD (lab machines), need to pass a special flag-pthread to the compiler
and linker to tell it to use the reentrant C librarylibc r.a.

It is also a good idea to do some extra initialization, to makesure the system will allow your threads
to make use of all available processors. It may, by default, allow only one thread in your program
to be executing at any given time. If your program will createup to n concurrent threads, you
should make the call:

10

CS 322 Operating Systems Spring 2008

pthread_setconcurrency(n+1);

somewhere before your first thread creation. The “+1” is needed to account for the original thread
plus then you plan to create.

You may also want to specify actual attributes as the second argument topthread create().
To do this, declare a variable for the attributes:

pthread_attr_t attr;

and initialize it with:

pthread_attr_init(&attr);

and set parameters on the attributes with calls such as:

pthread_attr_setscope(&attr, PTHREAD_SCOPE_PROCESS);

I recommend the above setting for threads in Solaris.

Then, you can pass in&attr as the second parameter topthread create().

Any global variables in your program are accessible to all threads. Local variables are directly
accessible only to the thread in which they were created, though the memory can be shared by
passing a pointer as part of the last argument topthread create().

A pthread “hello, world” program is inpthreadhello.c.

See Example:
/cluster/examples/pthreadhello

We said that threads share more context than processes. To see this, try outwhat shared.c.

See Example:
/cluster/examples/what shared

A slightly more interesting example is proctreethreads.

See Example:
/cluster/examples/proctree threads

This example builds a “tree” of threads to a depth given on thecommand line. It includes calls to
pthread self(). This function returns the thread identifier of the calling thread.

This is worth a look, since it’s a pthreads version of the program you will be writing for Lab 1, but
you’ll be using processes created withfork instead of threads created withpthread create.

Other Popular Thread Implementations

We will not say much about other thread implementations, butmany of the concepts and challenges
are similar:

11

CS 322 Operating Systems Spring 2008

• Windows has a Win32 thread interface which is similar in capability to pthreads.

• Java threads are a fundamental part of the language and JVM.

12

