Computer Science 322
M[] (C Operating Systems
_— Mount Holyoke College
MOUNT HOLYOKE COLLEGE Sprlng 2008

Topic Notes: Processes and Threads

What is a process? Our text defines it as “an abstraction ofrangprogram.”

Definitions from other textbooks:

e A program in execution (good one)

An asynchronous activity

the “locus of control” of a program in execution

that which is manifest by the existence of a process contogklin the OS

that entity which is assigned to processors

the “dispatchable” unit

o the “animated spirit” of a procedure

A process is sequential.

Parts of a process:

e program code (text section)
e program counter and other registers
e stack (local variables and function call information)

e data (global variables)

A typical multiprogrammed system has many processes atiaey {Tryps - aux orps - ef
to see the processes on your favorite Unix system. Only otigesk can be on the processor at a
time.

So if a process is in the system but not executing on the CPUrenbiét?

States of a process:

Crew >

preemption
@ dispatch

1/0 completion

creation exit

1/0 event

CS 322 Operating Systems Spring 2008

What information do we need to let a process transition amioaggt states?
Think about it in terms of what a person needs to do to get bmualhat he or she was doing before
being interrupted.

e you’re sitting in the lab working hard on your OS project and&one interrupts you

e your attention shifts and you go off and do something elsafahile

e then when you need to come back to the work, you need to renreshiaeyou were doing,

andwhere you were in the process of doing it

We do this all the time, and many of us are really pretty gooi. a& processor can't just pick
up where it left off, unless we carefully remember everyghirwas doing when it was so rudely
interrupted.

Process Control Block (PCB) — information needed to save and restore a process.

Process stare (running, waiting, ready)

Process identifier (PID)

Program counter

Other CPU registers

CPU scheduling information

Memory-management information

Accounting information

e |/O status information
In many Unix systems, the PCB is divided between two strusture

e Theproc structure, which holds the process information needed &trads, even when the
process is not active (swapped out).

e Theuser structure, which holds other information about the process

Historically, it was important to keep as much in the userctire and as little in the proc structure
as possible, because of memory constraints. As memory hisndarger, this has become less
important.

In FreeBSD, for example, most of the information is now in tihecpstructure. We can see it on
your favorite FreeBSD system inusr/ src/ sys/ sys/ proc. h. Seestruct proc to see
the structure at line 495.

CS 322 Operating Systems Spring 2008

The user structure is ihusr/ src/ sys/ sys/ user. h, and it is very small. It contains per-
thread information. Part of this isst r uct pcb, which is an architecture-dependent structure
defined in/ usr/ src/ sys/i 386/ i ncl ude/ pcb. h (line 44). Here you find the actual x86
registers that need to be saved when a process is removedHeo@PU. For comparison, check
out the Alpha version ihnusr/ src/ sys/ al pha/ i ncl ude.

The transition is called eontext switch. This is pure overhead, so it needs to be fast. Some systems
do it faster than others. Hardware support helps - more dridte.

This requires at least two levels of privilege, or modes aragion:
e User mode: execution of user processes. Low privilege. Chnamtess its own memory,
etc.
e Monitor mode (kernel mode, system mode): operating systesoution. Can do things like

switch among user processes, shut down the system, etc.

Hardware support is needed. Privileged instructions cagxbeuted only while in monitor mode.
We'll talk more about this as we go forward.

Process Creation/Deletion

In Unix, every process (except for the first) is created franeaisting process. Sgxs again for
examples. The processes form a tree, with the root beingrthé process (PID=1).

When a new process is created, what information does it infnenn or share with its parent?

Does it get any resources that were allocated to the parent?

Does the parent wait for the child to complete, or do they ebeconcurrently?

Is the child a duplicate of the parent, or is it something clenaby different?

If it's a duplicate, how much context do they share?

Can the parent terminate before the child?

Creation of a new process is a highly privileged operatioredquires the allocation of a new PCB,
insertion of this PCB into system data structures, among @perations that we would not trust
to regular “user” programs.

The typical solution to this is that such operations are joley throughsystem calls. These system
calls are functions that are part of the operating systemaa@gyermitted to perform some tasks
that a normal process is not able to do on its own. In effeetptiogram temporarily gains a higher
privilege level while executing the system call.

In Unix, thef or k() system call duplicates a process. The child is a copy of thenpa in
execution at the same point, the statement after the ratommffor k() .

3

CS 322 Operating Systems Spring 2008

The return value indicates if you are child or parent.
0 is child,> 0 means parent, -1 means failure (limit reached, permisseoired)

Example C program:

pi d=f ork();

if (pid) {
parent stuff;

}

el se {
child stuff;

}

A more complete program that usésr k() along with three other system calleai t (),
get pi d(), andget ppi d())isinforki ng. c:

See Example:
/ cl ust er/ exanpl es/ f orki ng

Some comments about this program:

First, we run it to observe what happens. Note that therelysare copy of the printout before the
f or k() , two of the one afterf or k() is a very unusual function - you call it once, but it returns
twice!

How do we know how these work? See the man pages!fThe page tells us what we need to
include, and how to use it.

How aboutwai t ? If we issue the commanuan wai t, we get the man page fdrui | ti n,
as there is a built-imai t command in the shell. To get the page we want, we need to gpecif
manual “section.” Section 2 is the system calls section. ddmmandran 2 wai t will get us
the page we want.

Are there really two processes? Let’s look at the outpydsoas the program runs.

Again, these system calls let you, as a normal user, do thiregonly the system can really do.
Your “user mode” process can get access to “kernel modetifumality through these calls.

How many processes can we create on various systems? Whearéhgokmit come from? Can
we create enough processes to take down a system?

See Example:
/ cl ust er/ exanpl es/ f or kbonb

If we look at theps output on a Unix system, we will see a lot of processes ownewaly Many
of these are essential parts of the system and are intendedtiaoue running as long as the system
is up. These processes are calliedmons and are the motivation for the BSD logo.

The FreeBSD implementation &6br k() isin/ usr/src/ sys/ kern/ kern_fork. c.

Things to note here (for an example — don’t worry about thaitigt

4

CS 322 Operating Systems Spring 2008

e the action is happening inor k1()

e Line 271: actually allocate the new proc structure witha_zal | oc, a speciaimal | oc
basically (seeal | oc(9) .

e Fill in some of the structure.

e Line 289: check if a new process is allowed based on glob&syEmits.

e nprocs is the kernel variable that stores the number of@ptiocesses in the system.
e Line 322: find an available pid. Note tigot os.

e Line 446: initialize proc table entry

e Line 622: attach new process to parent — or to init procesdrtain flag is set to say that
the parent should not wait for its child.

e Line 644: deal with some memory for the new child.

e Line 679: set on run queue, so the child can start executing.

We will see that in many cases, you will want to use tHeor k(2) system call instead of
fork(). This one doesn’'t copy the address space of the process suitnas you are going
to replace the newly created process’ program with a new one.

In the Windows world, there is @r eat eProcess() Win32 call (Win32 is like a POSIX for
Windows) that creates a new process and loads the corregigonanto that new process.

Later, we will consider more system calls, including ones tat you do things more interesting
than making a copy of yourself.

We also will consider later how all this gets started — howsdibext first process get started that
f or ks everything else?

Processes may need to communicate with each other in soneeimeresting way than making
copies of themselves. We will see a number of ways this carohe,dut in your lab this week,
you will make use of a small chunk of POSIX shared memory.

The textbook has examples of how to create a shared memamyeseghat can be accessed by
your parent and child process.

Another possibility is to have processes pass messageshm#éaer over the network or through
the file system.

We will spend a good chunk of time later this month on coopeggtrocesses.
Once we have all of these processes, we need to manage theafl.tReprocess states.

Basically, each process in the system has to be in one of $guenges. These apeocess schedul -
ing queues

The system maintainsocess table and the PCBs are stored in these process scheduling queues.

5

CS 322

Operating Systems

—

vy

ready queue

»{ CPU !

\\O-CCUFS p

interrupt

child
executes

[5

~ ~ I
/O queue - /O request
~
time slice
expired
~

fork a

! 3

child

wait for an

interrupt

Spring 2008

The selection of a process from the ready queue to run on the i€ topic for our CPU

scheduling lectures.

A fundamental job of the OS is to manage these queues.

FreeBSD defines it’s run/ready queues insr / src/ sys/ kern/ kern_swi tch. c

There are actually 64 regular queues (this number is definedlsr / sr c/ sys/ sys/ rung. h).

We'll think more about what these are about when we talk abidlt scheduling.

As processes go through the system, processes will be adsigthe CPU (dispatched) or removed
from the CPU dozens or even hundreds of times per second. HEdbkse swaps is aontext

switch, saving a CPU state in a PCB, then restoring another PCB.

Remember, the context switch is pure overhead. The systeot @oimg any useful computation
when it’'s working on a context switch. It had better be fast.

Diagram of context switch:

CS 322 Operating Systems Spring 2008

process Pn operaling system process P1

interrupt or system call

executing H
T] save state into PCB, J

idle

| reload state from PCB, |

> idle exacuting

interrupt or system call

£ v

| save state into PCB, |

idle

| reload state from PCB, |

FreeBSD does this in what is necessarily an architecturertsmt routine.

In fact, it's an assembly source file, not Qliisr/ src/ sys/i 386/i 386/ sw ch. s

Notes about the context switch:

e Line 95: an assembly code entry point (essentially fungtoqpu_swi t ch.

Line 108: save hardware registers into PCB.

Line 144: save floating point stuff — note “big C function”

Line ???: choose a new proc: come back next week for more

Lots of other stuff....

Line 253: restore PCB of new proc

ends up returning to the new proc, picking up where it left off

Registers are just one part of a process’ context. What abaubny® What about stuff in a cache?

We'll talk about main memory around spring break. Each pgede the ready/run queues has
some main memory allocated to it.

But cache is another story. Remember how a typical cache ispseClosest to the CPU and
registers in the memory hierarchy.

As the CPU requests memory, lines of values from memory aneghtanto the cache. If all goes
well, these lines will be reused.

CS 322

Operating Systems Spring 2008

But when a context switch occurs, the things from the prodessitas on the CPU that are now in
cache seem unlikely to survive there until that process getsher chance on the CPU. We may
force a lot of cache misses, adding more overhead to thexd@wigch cost.

Threads/Lightweight Processes

Those of you who have taken or TA'ed for the “objectdraw” vemsof the intro class here know
about Java threads. You may have called therhi veQbj ect s. These gave you the ability to
have your programs doing more than one thing at a time. Sucbgigm is callednultithreaded.

l_;u.J._-. | I data]

| mies |

Goo

regisiers

| stack |

l regisiers regsiors 1 TQEEIETs |

hreag == %

l lack | slack | slack }

JHEE

Threads are a stripped-down form of a process:

e atask or process can contain multipléhreads

e Threads share process context

Threads are asynchronous

Threads have less context than processes
Threads can be created/destroyed at a lower cost than pesces
Threads cooperate to do a process in parallel with (relggifime granularity of parallelism

Threads are well-suited to symmetric multiprocessors (SMP

Threads can be useful even in single-user multitaskingeeyst

e Foreground and background work: one thread to deal with ingert, another to update
display, etc such as in a spreadsheet or word processor.

e Asynchronous processing: auto-save features, backgmamgutation.

8

CS 322 Operating Systems Spring 2008

e Speed execution: compute with one batch of data while rgaamother.Your process can
be in 1/0 and on the CPU at the same time!

e Organizing programs: cleaner and more elegant programgmlesi

A “normal” single-thread process has its program text, gl@uldress space, a stack, and a PC.

A multithreaded process has its program text, a single drglabal address space, but a stack and
a PC for each thread.

See SG&G Figure 4.1.

Each thread also needs to be able to access the registerstwioarthe CPU, so while the context
switch among threads doesn’t have to worry about everythingll still need to save registers.

Sample thread application An NFS (network file system) server.

A single thread of execution would be unreasonable for dllthe most lightly-loaded servers.
Realistically, a new process or thread needs to be createdbbrrequest.

With “heavyweight” processes, each request from the nétwauld require a heavyweight pro-
cess creation. A series of requests would result in freq@éott-duration processes being created
and destroyed. Significant overhead would result.

With multithreading, a single NFS server task (a process)ecast, and a new thread would be
created within the task for each requé'giop-up” threads). There is less overhead, plus if there
are multiple CPUs available, threads can be assigned to eatdster performance.

User Threads vs. Kernel Threads

Threads may be implemented within a process (in “user spase,often referred to as “userland”)
or by the kernel (in “kernel space”).

With user threads, the kernel sees only the main processhamatocess itself is responsible for
the management (creation, activation, switching, destmcof the threads.

With kernel threads, the kernel takes care of all that. Thieédeschedules not just the process, but
the thread.

There are significant advantages and disadvantages to®acte systems provide just one, some
systems, such as Solaris, provide both.

One big thing is that with user threads, it is often the caaewlnen a user thread blocks (such as
for 1/0 service), the entire process blocks, even if somermttreads could continue. With kernel
threads, one thread can block while others continue.

pthreads, POSIX threads

We saw how to uséor k() to create threads in Unix. There is a POSIX standard interfac
create threads.

CS 322 Operating Systems Spring 2008

A google search for “pthread tutorial” yields many results.

Instead of creating a copy of the process lika k() , create a new thread, and that thread will
call a functionwithin the current task.

The basic pthread functions are:

Simplest form:

int pthread create(pthread t *thread, const pthread attr_t =attr,
void * (xstart_routine)(void *),
voi d *arg);

int pthread join(pthread t thread, void **status);

voi d pthread_exit(void *val ue_ptr);

e pt hread_creat e(3THR) — Well, this creates a new thread. It takes 4 arguments. The
firstis a pointer to a variable of typge hr ead_t . Upon return, this contains a thread identi-
fier that is used later ipt hr ead_j oi n() . The second is a pointer tqgpad hr ead_at t r _t
that specifies thread creation attributes. In the pthrdbvegram, we pass iNULL, which
specifies the system default attributes. The third argumsenpointer to a function that will
be called when the thread is started. This function must takangle parameter of type
voi d * and returnvoi d *. The fourth parameter is the pointer that will be passedeas th
argument to the thread function.

e pt hread_exi t (3THR) — This causes the calling thread to exit. This is called iouh
if the thread function returns. Its argument is a returrustaalue, which can be retrieved by
pt hread_j oi n().

e pt hread j oi n(3THR) — This causes the calling thread to block until the threadh wit
the identifier passed as the first argumenptdir ead_j oi n() has exited. The second
argument is a pointer to a location where the return statssgubtgt hr ead _exi t () can
be stored. In the pthreadhello program, we pasdubL, and hence ignore the value.

Prototypes for pthread functions argihhr ead. h and programs need to link with bpt hr ead. a
(use- | pt hr ead at link time). When using the Sun compiler, thet flag should also be speci-
fied to indicate multithreaded code.

To compile under FreeBSD (lab machines), need to pass a kffagiapt hr ead to the compiler
and linker to tell it to use the reentrant C librdrybc r . a.

Itis also a good idea to do some extra initialization, to make the system will allow your threads
to make use of all available processors. It may, by defalldiyvaonly one thread in your program
to be executing at any given time. If your program will creafeto n concurrent threads, you
should make the call:

10

CS 322 Operating Systems Spring 2008

pt hr ead_set concurrency(n+1);
somewhere before your first thread creation. The “+1” is Bddéd account for the original thread
plus then you plan to create.
You may also want to specify actual attributes as the secandveent topt hr ead create().
To do this, declare a variable for the attributes:

pthread attr _t attr;
and initialize it with:

pthread attr_init(&attr);
and set parameters on the attributes with calls such as:

pthread _attr_setscope(&attr, PTHREAD SCOPE_PROCESS);

| recommend the above setting for threads in Solaris.
Then, you can pass iat t r as the second parametergbhr ead_creat e() .

Any global variables in your program are accessible to a#dls. Local variables are directly
accessible only to the thread in which they were createdjghdhe memory can be shared by
passing a pointer as part of the last argumemittor ead _cr eat e() .

A pthread “hello, world” program is ipt hr eadhel | 0. c.

See Example:
/ cl ust er/ exanpl es/ pt hreadhel | o

We said that threads share more context than processese Tisdry outwhat _shar ed. c.

See Example:
/ cl ust er / exanpl es/ what _shar ed

A slightly more interesting example is proctrdeeads.

See Example:
/ cl ust er/ exanpl es/ proctree_t hreads

This example builds a “tree” of threads to a depth given orctiramand line. It includes calls to
pt hr ead_sel f () . This function returns the thread identifier of the callihgeiad.

This is worth a look, since it's a pthreads version of the paogyou will be writing for Lab 1, but
you’ll be using processes created witbr k instead of threads created with hr ead_cr eat e.

Other Popular Thread Implementations

We will not say much about other thread implementationsiany of the concepts and challenges
are similar:

11

CS 322 Operating Systems Spring 2008

e Windows has a Win32 thread interface which is similar in ¢alis to pthreads.

e Java threads are a fundamental part of the language and JVM.

12

